• Title/Summary/Keyword: RPD process

Search Result 26, Processing Time 0.026 seconds

Accuracy of CAD-CAM RPD framework according to manufacturing method: A literature review (국소의치 구조물(framework)의 CAD-CAM 제조방식에 따른 정확도: 문헌고찰)

  • Yi, Yuseung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.3
    • /
    • pp.370-378
    • /
    • 2021
  • Purpose. The purpose of this study was to evaluate the currently published literatures investigating the accuracy of computer-aided design and computer-aided manufacturing removable partial denture (CAD-CAM RPD) framework with different manufacturing techniques and methods. Materials and methods. A comprehensive search for literatures was conducted in PubMed database using specific keywords with the patient, intervention, comparison, and outcome (PICO) question, "Is there a difference in accuracy of RPD frameworks manufactured using digital workflow according to the manufacturing process and methods?" Results. A total of 7 articles were selected. Two studies compared intraoral scanning and laboratory scanning for RPD frameworks and had heterogenous results. In the studies using different manufacturing process, RPD frameworks had clinically acceptable accuracy in both subtractive and additive manufacturing. Polyetheretherketone (PEEK)-milled RPD frameworks showed higher fit accuracy than traditionally casted or 3D printed RPDs. Direct milling method showed a higher accuracy than indirect milling method. However, in rapid prototyping, indirect method showed higher accuracy than direct method. Conclusion. The RPD frameworks fabricated using CAD-CAM technology showed a clinically acceptable level of accuracy regardless of manufacturing process or techniques. Consistent results have not been reported regarding the digital impression methods, which were intra oral scanning or laboratory scanning, and further studies are needed.

Development of a STEP-compliant Web RPD Environment (STEP표준과 Web을 이용한 RPD환경 구축)

  • 강석호;김민수;김영호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2000
  • In this paper, we present a Web-enabled product data sharing system for the support of RPD (Rapid Product Development) process by incorporating STEP (STandard for the Exchange of Product model data) with Web technology such as VRML (Virtual Reality Markup Language), SGML (Structured Generalized Markup Language) and Java. Extreme competition makes product life cycle short by incessantly deprecating current products with a brand-new one, and thus urges enterprises to devise a new product faster than ever. In this environment, an RPD process with effective product data sharing system is essential to outstrip competitors by speeding up the development process. However, the diversity of product data schema and heterogeneous systems make it difficult to exchange the product data. We chose STEP as a neutral product data schema and Web as an independent exchange environment to overcome these problems. While implementing our system, we focused on the support of STEP AP 203 UoF (Units of Functionality) views to efficiently employ STEP data models that are maximally normalized, and therefore very cumbersome to handle. Our functionality-oriented UoF view approach can increase users'appreciation since it facilitates the modular usage of STEP data models. This can also enhance the accuracy of product data. We demonstrate that our view approach is applicable to the configuration control of mechanical assemblies.

  • PDF

A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods (반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법)

  • Le, Tuan-Ho;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.

Integration of RPD Modules Using SOAP (SOAP을 이용한 쾌속제품개발모듈의 통합)

  • 김호찬;최홍태;김준안;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.38-41
    • /
    • 2003
  • Better understanding and sharing information are getting important to manage interdisciplinary product development team in a globally-distributed company. This study propose a solution to implement RPD(Rapid Product Development) system, focusing on rapid production process, for better understanding between development team members in different place and easy sharing of product information. The system developed by this research shows that SOAP(Simple Object Access Protocol) operates in distributed environment more efficiently than other RPC(Remote Procedure Call) techniques and it does not respond sensitively to firewall. And SOAP is an excellent RPC and messaging technique to exchange structured data. Procedures developed with use of SOAP are worked together with web, and users can use remote services as an application program in their computer.

  • PDF

Development of the Design Process for Laser Scanned Model (레이저 스캔 모델의 설계 프로세스 개발)

  • Kim, Chwa-Il;Wang, Se-Myung;Kang, Eui-Chul;Lee, Kwan-Heng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1029-1034
    • /
    • 2004
  • Recent engineering process requires fast development and manufacturing of the products. This paper mainly discusses the process of rapid product development (RPD) from the reverse engineering to the optimal design. A laser scanning system scans a product and the efficient data processing method reduces the scanned point data. The reduced (scanned) points model is transformed to a finite element model without the construction of a CAD model. Since CAD modeling is a time-consuming work, skipping this step can save much time. This FE model is updated from the result based on the structural characteristics from modal test of the real model. For FE model updating, Response Surface Method is adopted. Finally, the updated FE model is optimized using the reliability-based topology optimization, which is developed recently. All these processes are applied to the design of an upper part model of a cellular phone.

  • PDF

Fabrication of surveyed crown and repairing the artificial teeth for existing removable partial denture using digital technology: a case report (디지털 방식을 이용한 기존 국소의치 맞춤 보철 제작과 심미적인 인공치 수리 증례)

  • Ina Kim;Eunji Oh;Sang-Won Park;Hyun-Pil Lim;Kwi-dug Yun;Chan Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.82-90
    • /
    • 2024
  • It often happens that a removable partial denture needs to be repaired due to tissue changes in the remaining alveolar ridge, fracture of the denture, or fracture of the abutment tooth. There are several advantages to retrofitting a customized surveyed crown under the existing RPD. Retrofitting a crown to the RPD decreases the economic burden to the patient and avoids the need for several appointments to fabricate a new RPD. It is difficult for artificial teeth used to repair dentures due to fractured natural teeth to have a shape similar to that of natural teeth, and to repair aesthetic artificial teeth, it is necessary to manufacture customized artificial teeth similar to the shape of each patient's teeth. Recently, CAD/CAM technology has been used to fabricate customized prosthetics on existing RPD to achieve high retention and fitness accuracy, and by manufacturing customized artificial teeth, more aesthetic and harmonious artificial tooth repair is possible. This is a case in which a denture was repaired using a digital method to fabricate a customized prosthesis on an existing partial denture and customized artificial teeth that mirrored the adjacent dentition, saving time and cost, simplifying the process, and achieving aesthetically and functionally satisfactory results.

Study on the Reconstruction of Skull Prototype using CT image and Laser Scanner

  • Hur, Sung-Min;Lee, Seok-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.146-151
    • /
    • 2000
  • The importance of shape reconstruction is increasing in many areas such as RPD(Rapid Product Development) and reverse engineering. Typical data in these areas are mainly classified as the shape data measured by a laser scanner and the data extracted from the CT image. The goal of this research is to realize three-dimensional shape construction by showing a possible way to analyze input image data and reconstruct the original shape. Two main steps of the reconstructing process are obtaining cross-section data from image processing and linking loops between one slice and the next. Objects reconstructed in this way are compared with other objects using a laser scanner and modelled by commercially available software. The technique is expected to be used in reverse engineering applications and the object modeling with automated process.

  • PDF

DMLS (Direct Metal Laser Sintering) denture repair technique for a removable partial denture: A case report (DMLS (Direct Metal Laser Sintering) 기술을 이용한 가철성 국소의치 수리 증례)

  • Jang, Eun-Sun;Jang, Geun-Won;Byun, Jae-Joon;Kong, Dae-Ryong;Song, Joo-Hun;Lee, Gyeong-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.251-256
    • /
    • 2020
  • In recent years, digital technology has been developed in dentistry, which denture frameworks can be manufactured using DMLS (Direct Metal Laser Sintering) technique. A traditional impression method can be replaced by oral scanning and wax pattern production process can be achieved by the use of CAD/CAM techniques. The designed STL files can be sent to DMLS devices to fabricate final components of removable partial dentures (RPD). The advantages of digital dentistry are concision and precision. In this case study, a fracture of occlusal rests providing support and indirect retention was repaired by DMLS and laser welding techniques. It shows satisfactory results in adaptation accuracy and functional properties of the repaired denture.

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

Study on the Reconstruction of Skull Prototype using Sliced Image Data (단면 영상 데이터에 의한 두상 인골모형 제작에 관한 연구)

  • 허성민;한동구;이기현;이석희;최병욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.76-83
    • /
    • 2000
  • Shape reconstruction is considered as a new technology to be useful and important in many areas such as RPD (Rapid Product Development) and reverse engineering, compared with the conventional design and manufacturing. In shape reconstruction, it becomes possible to reconstruct objects not by their measured shape data but those data extracted from the original shape. The goal of this research is to realize 3D shape construction by showing a possible way to analyze the input image data and reconstruct that original shape. The main 2 steps of the reconstructing process are getting cross-section data from image processing and linking loops between one slice and the next one. And the reconstructed object in this way is compared with the other object using a laser scanner and modelled by an commercial software.

  • PDF