DOI QR코드

DOI QR Code

반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법

A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods

  • ;
  • 신상문 (동아대학교 산업경영공학과)
  • Le, Tuan-Ho (Department of Technology and Technique, Quy Nhon University) ;
  • Shin, Sangmun (Department of Industrial & Management Systems Engineering, Dong-A University)
  • 투고 : 2017.11.25
  • 심사 : 2017.12.11
  • 발행 : 2018.03.31

초록

Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.

키워드

참고문헌

  1. Abate, M. L., and Marcey L. 1995. "The use of historical data in statistical selection and robust product design." PhD Thesis, Department of Statistics, Purdue University.
  2. Abate, M. L., Morrow, M. C., and Kuczek, T. 1996. "An application of robust parameter design using an alternative to Taguchi methods." The American Statistical Association Conference, Chicago, United States.
  3. Aggarwal, M. L. and Kaul, R. 1999. "Combined array approach for optimal designs." Communications in Statistics theory and Methods 28(11):2655-2670. https://doi.org/10.1080/03610929908832444
  4. Aitkin, M. 1987. "Modeling variance heterogeneity in normal regression using GLIM." Journal of the Royal Statistical Society. Series C (Applied Statistics) 36(3):332-339.
  5. Ames, A. E., Mattucci, N., Macdonald, S., Szonyi, G., and Hawkins, D. M. 1997. "Quality loss functions for optimization across multiple response surfaces." Journal of Quality technology 29(3):339-346. https://doi.org/10.1080/00224065.1997.11979775
  6. Apley, D. W., and Kim, J. 2004. "Cautious control of industrial process variability with uncertain input and disturbance model parameter." Technometrics 46(2):188-199. https://doi.org/10.1198/004017004000000239
  7. Apley, D. W., and Kim, J. 2011. "A cautious approach to robust design with model parameter uncertainty." IIE Transactions 43:471-482. https://doi.org/10.1080/0740817X.2010.532854
  8. Apley, D. W., Liu, J., and Chen, W. 2006. "Understanding the effects of model uncertainty in robust design with computer experiments." Transactions of the ASME, Journal of Mechanical Design 128(4):945-958. https://doi.org/10.1115/1.2204974
  9. Ardakani, M. K., Noorossana, R., Niaki, S. T. A., and Lahijanian, H. 2009. "Robust parameter design using weighted metric method-The case of The smaller the better." International Journal of Applied Mathematics and Computer Science 19(1):59-68. https://doi.org/10.2478/v10006-009-0005-7
  10. Borkowski, J. J., and Lucas, J. M. 1997. "Designs of mixed resolution for process robustness studies." Technometrics 39:63-70.
  11. Borror, C. M. 1998. "Mean and variance modeling with qualitative responses: A case study." Quality Engineering 11(1):141-148. https://doi.org/10.1080/08982119808919219
  12. Borror, C. M., and Montgomery, D. C. 2000. "Mixed resolution designs as alternatives to Taguchi inner/outer array designs for robust design problems." Quality and reliability engineering international 16:117-127. https://doi.org/10.1002/(SICI)1099-1638(200003/04)16:2<117::AID-QRE309>3.0.CO;2-0
  13. Borror, C. M., Montgomery, D. C., and Myers, R. H. 2002. "Evaluation of statistical designs for experiments involving noise variables." Journal of Quality Technology 34(1):54-70. https://doi.org/10.1080/00224065.2002.11980129
  14. Box, G. E. P., and Jones, S. 1992a. "Designing the products that are robust to the environment." Total Quality Management 3(3):265-282. https://doi.org/10.1080/09544129200000034
  15. Box, G. E. P., and Jones, S. 1992b. "Split-plot designs for robust product experimentation." Journal of Applied Statistics 19:3-26. https://doi.org/10.1080/02664769200000001
  16. Box, G. E. P., and Draper, N. R. 1987. Empirical model-building and response surfaces (Wiley Series in Probability and Statistics). New York: John Wiley & Sons.
  17. Box, G. E. P. 1988. "Signal-to-noise ratios, performance criteria, and transformations." Technometrics 30(1):1-17. https://doi.org/10.1080/00401706.1988.10488313
  18. Box, G. E. P., and Wilson, K. B. 1951. "On the experimental attainment of optimum conditions (with discussion)." Journal of the Royal Statistical Society Series B 13(1):1-45.
  19. Brinkley, P. A., Meyer, K. P., and Lu, J. C. 1996. "Combined generalized linear modeling non-linear programming approach to robust process design-a case study in circuit board quality improvement." Journal of Applied Statistics 45(1):99-110. https://doi.org/10.2307/2986226
  20. Byun, J. H., Kim, Y. T., and Lee, M. j. 2013. "Understanding robust design with paper helicopter experiment." Journal of the Korean Institute of Industrial Engineers 39(5):374-382. https://doi.org/10.7232/JKIIE.2013.39.5.374
  21. Chen, Y., and Ye, K. 2011. "A Bayesian hierarchical approach to dual response surface modeling." Journal of Applied Statistics 38(9):1963-1975. https://doi.org/10.1080/02664763.2010.545106
  22. Chen Y., and Ye, K. 2009. "Bayesian hierarchical modeling on dual response surfaces in partially replicated designs." Quality Technology & Quantitative Management 6(4):371-389. https://doi.org/10.1080/16843703.2009.11673205
  23. Ch'ng, C. K., Quah, S. H., and Low, H. C. 2005. "The MM-estimator in response surface methodology." Quality Engineering 17:561-565. https://doi.org/10.1080/08982110500225323
  24. Cho, B. R. and Park, C. S. 2005. "Robust design modeling and optimization with unbalanced data." Computers & Industrial Engineering 48(2):173-180. https://doi.org/10.1016/j.cie.2005.01.004
  25. Cho, B. R., Kim, Y. J., Kim, D. L., and Philips, M. D. 2000. "An integrated joint optimization procedure for robust and tolerance design." International Journal of Production Research 38(10):2309-2325. https://doi.org/10.1080/00207540050028115
  26. Cho, B. R., Philips, M. D., and Kapur, K. C. 1996. "Quality improvement by RSM modeling for robust design." The 5th Industrial Engineering Research Conference, Minneapolis, 650-655.
  27. Choi, D. H., Shin S., Truong, N. K. V., Jung Y. J. Chu K. R., and Jeong, S. H. 2012. "A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets." Journal of Drug Development and Industrial Pharmacy 38(9):1117-1127. https://doi.org/10.3109/03639045.2011.641563
  28. Copeland, K. A. F., and Nelson, P. R. 1996. "Dual response optimization via direct function minimization." Journal of Quality Technology 28(3):331-336. https://doi.org/10.1080/00224065.1996.11979683
  29. Das, R. N. 2011. "Dual response surface methodology: Applicable always?. ProbStat Forum." 04:98-103.
  30. Wu, C. F. J. 2006. "Robust parameter design with feedback control." Technometrics 48(3):349-359. https://doi.org/10.1198/004017005000000634
  31. Del Castillo, E., and Montgomery, D. C. 1995. "A nonlinear programming solution to the dual response problem." Journal of Quality Technology 25:199-204.
  32. Del Castillo, E., Colosimo, B. M., and Alshraideh, H. 2012. "Bayesian modeling and optimization of functional responses affected by noise factors." Journal of Quality Technology 44(2):117-135. https://doi.org/10.1080/00224065.2012.11917888
  33. Dellino, G., Kleijnen J. P. C., and Carlo, M. 2010. "Robust optimization in simulation: Taguchi and response surface methodology." International Journal of Production Economics 125(1):52-59. https://doi.org/10.1016/j.ijpe.2009.12.003
  34. Ding, R., Lin, D. K. J., and Wei, D. 200). "Dual response surface optimization: A weighted MSE approach." Quality engineering 16(3):377-385. https://doi.org/10.1081/QEN-120027940
  35. Egorov, I. N., Kretinin, G. V., Leshchenko, I. A., and Kuptzov, S. V. 2007. "Multi-objective approach for robust design optimization problems." Inverse Problems in Science and Engineering 15(1):47-59. https://doi.org/10.1080/17415970600573916
  36. Engel, J. 1992. "Modeling variation in industrial experiments." Journal of the Royal Statistical Society. Series C (Applied Statistics) 41(3):579-593.
  37. Engel, J., and Huele, A. F. 1996. "A generalized linear modeling approach to robust design." Technometrics 38(4):365-373. https://doi.org/10.1080/00401706.1996.10484548
  38. Engel, J., and Huele, A. F. 2007. "Taguchi parameter design by second-order response surfaces." Quality and Reliability Engineering International 12(2):95-100. https://doi.org/10.1002/(SICI)1099-1638(199603)12:2<95::AID-QRE988>3.0.CO;2-M
  39. Fogliatto, S. F. 2008. "Multi-response optimization of products with functional quality characteristics." Quality and Reliability Engineering International 24:927-939.
  40. Frey, D. D., and Li, X. 2004. "Validating robust-parameter-design methods." ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers:459-471.
  41. Goegebeur, Y., Goos, P., and Vandebroek, M. 2007. "A hierarchical Bayesian approach to robust parameter design." DTEW-KBI_0719:1-22.
  42. Goethals, P. L. and Cho, B. R. 2010. "The development of a robust design methodology for time-oriented dynamic quality characteristics with a target profile." Quality and Reliability Engineering International 27(4):403-414. https://doi.org/10.1002/qre.1122
  43. Govindaluri, S. & Cho, B. R. 2007. "Robust design modeling with correlated quality characteristics using a multicriteria decision framework." The International Journal of Advanced Manufacturing Technology 32:423-433. https://doi.org/10.1007/s00170-005-0349-6
  44. Grego, J. M. 1993. "Generalized linear models and process variation." Journal of Quality Technology 25:288-295. https://doi.org/10.1080/00224065.1993.11979474
  45. Hamada, M., and Nelder, J. A. 1997. "Generalized linear models for quality-improvement experiments." Journal of Quality Technology 29:292-304. https://doi.org/10.1080/00224065.1997.11979770
  46. Huber, P. J. 1981. Robust Statistics. (1st ed.). New York: John Wiley & Sons.
  47. Jin, J., and Ding, Y. 2004. "Online automatic process control using observable noise factors for discrete-part manufacturing." IIE Transactions 36:899-911. https://doi.org/10.1080/07408170490473105
  48. Johnson, R. T., and Montgomery, D. C. 2009. "Choice of second-order response surface designs for logistic and Poisson regression models." International Journal of Experimental Design and Process Optimization 1(1):2-23. https://doi.org/10.1504/IJEDPO.2009.028954
  49. Joseph, V. R. 2003. "Robust parameter design with feed-forward control." Technometrics, 45(4):284-292. https://doi.org/10.1198/004017003000000113
  50. Kang, L., and Joseph, V. R. 2009. "Bayesian optimal single arrays for robust parameter design." Technometrics 51(3):250-261. https://doi.org/10.1198/tech.2009.08057
  51. Kasimbeyli, R. 2013. "A conic scalarization method in multi-objective optimization." Journal of Global Optimization 56:279-297. https://doi.org/10.1007/s10898-011-9789-8
  52. Khattree, R. 1996. "Robust parameter design: A response surface approach." Journal of Quality Technology 28:187-198. https://doi.org/10.1080/00224065.1996.11979659
  53. Khuri, A. I., and Cornell, J. A. 1987. Response surface: design and analyses. (1st ed.). New York: CRC Press.
  54. Khuri, A. I., and Mukhopadhyay, S. 2010. "Response surface methodology." Wiley Interdisciplinary Reviews: Computational Statistics 2(2):128-149. https://doi.org/10.1002/wics.73
  55. Kim, K. J., and Lin, D. K. J. 1998. "Dual response surface optimization: A fuzzy modeling approach." Journal of Quality Technology 30:1-10. https://doi.org/10.1080/00224065.1998.11979814
  56. Kim, Y. J., and Cho, B. R. 2000. "Economic considerations on parameter design." Quality and Reliability Engineering International 16(6):501-514. https://doi.org/10.1002/1099-1638(200011/12)16:6<501::AID-QRE358>3.0.CO;2-Y
  57. Kim, Y. J., and Cho, B. R. 2002. "Development of priority-based robust design." Quality Engineering 14:355-363. https://doi.org/10.1081/QEN-120001874
  58. Koksoy, O. 2006. "Multi-response robust design: Mean square error (MSE) criterion." Applied Mathematics and Computation 175:1716-1729. https://doi.org/10.1016/j.amc.2005.09.016
  59. Koksoy, O. 2008. "A nonlinear programming solution to robust multi-response quality problem." Applied Mathematics and Computation 196 (2):603-612. https://doi.org/10.1016/j.amc.2007.06.023
  60. Koksoy, O., and Doganaksoy, N. 2003. "Joint optimization of mean and standard deviation using response surface methods." Journal of Quality Technology 35:239-252. https://doi.org/10.1080/00224065.2003.11980218
  61. Koksoy, O., and Yalcinoz, T. 2006. "Mean square error criteria to multi-response process optimization by a new genetic algorithm." Applied Mathematics and Computation 175:1657-1674 https://doi.org/10.1016/j.amc.2005.09.011
  62. Kovach, J., Cho, B. R., and Antony, J. 2008. "Development of a variance prioritized multi-response robust design framework for quality improvement." International Journal of Quality and Reliability Management 26(4):380-396. https://doi.org/10.1108/02656710910950360
  63. Kovach, J., Cho, B. R., and Antony, J. 2008. "Development of a variance prioritized multi-response robust design framework for quality improvement." International Journal of Quality and Reliability Management 26(4):380-396. https://doi.org/10.1108/02656710910950360
  64. Le, T. H., and Shin, S. 2013. "Augmented weighted Tchebycheff modeling and robust design optimization on a drug development process." Journal of the Korean Institute of Industrial Engineers 39(5):403-411. https://doi.org/10.7232/JKIIE.2013.39.5.403
  65. Lee, D. H., Jeong, I. J., and Kim, K. J. 2009. "A posterior preference articulation approach to dual-response-surface optimization." IIE Transactions 42(2):161-171. https://doi.org/10.1080/07408170903228959
  66. Lee, M. S., and Kim, K. J. 2007. "Expected desirability function: Consideration of both location and dispersion effects in desirability function approach." Quality Technology and Quantitative Management 4(3):365-377. https://doi.org/10.1080/16843703.2007.11673157
  67. Lee, S. B., and Park, C. S. 2006. "Development of robust design optimization using incomplete data." Computers & Industrial Engineering 50:345-356. https://doi.org/10.1016/j.cie.2006.06.005
  68. Lee, S., Park, C. S., and Cho, B. R. 2007. "Development of a highly efficient and resistant robust design." International Journal of Production Research 45(1):157-167. https://doi.org/10.1080/00207540600649202
  69. Leon, R. V., Shoemaker, A. C., and Kacker, R. N. 1987. "Performance measures independent of adjustment-An explanation and extension of Taguchi's signal-to-noise ratios." Technometrics 29(3):253-265. https://doi.org/10.1080/00401706.1987.10488231
  70. Lin, D. K. J., and Tu, W. 1995. "Dual response surface optimization." Journal of Quality Technology 27:34-39.
  71. Lindsey, J. K. 1972. "Fitting response surfaces with power transformations." Journal of the Royal Statistical Society. Series C (Applied Statistics) 21(3):234-247.
  72. Lizotte, D. J., Greiner, R., and Schuurmans, D. 2012. "An experimental methodology for response surface optimization methods." Journal of Global Optimization 52(4):698-736.
  73. Lucas, J. M. 1994. "How to achieve a robust process using response surface methodology." Journal of Quality Technology 25:248-260.
  74. Luner, J. J. 1994. "Achieving continuous improvement with the dual response approach: A demonstration of the Roman catapult." Quality Engineering 6(4):691-705.
  75. Marler, R. T., and Arora, J. S. 2004. "Survey of multi-objective optimization methods for engineering." Structural and Multidisciplinary Optimization 26:369-395. https://doi.org/10.1007/s00158-003-0368-6
  76. Montgomery, D. C. 1990. "Using fractional factorial designs for robust process development." Quality Engineering 3:193-205.
  77. Montgomery, D. C. 1999. "Experimental design for product and process design and development." Journal of the Royal D, 48:159-177.
  78. Montgomery, D. C. 2005. Design and Analysis of experiments. (5th ed.). New York: John Wiley & Sons.
  79. Montgomery, D. C., Peck, E. A., and Vining, G. G. 2001. Introduction to linear regression analysis. (3rd ed.). New York: John Wiley & Sons.
  80. Myer, R. M., Kim, Y., and Griffiths, K. L. 1997. "Response surface methods and the use of noise variables." Journal of Quality Technology 29(4):429-440. https://doi.org/10.1080/00224065.1997.11979794
  81. Myers, R. H. 1992. "Response surface methodology in quality improvement." Communications in Statistics-Theory and Methods 20(2):457-476. https://doi.org/10.1080/03610929108830509
  82. Myers, R. H. 1999. "Response surface methodology-Current status and future directions." Journal of Quality Technology 31:54-57. https://doi.org/10.1080/00224065.1999.11979894
  83. Myers, R. H., and Montgomery, D. C. 1995. Response surface methodology: Process and product optimization using designed experiments. (1st ed.). New York: John Wiley & Sons.
  84. Myers, R. H., and Montgomery, D. C. 1997. "A tutorial on generalized linear models." Journal of Quality Technology 29:274-291. https://doi.org/10.1080/00224065.1997.11979769
  85. Myers, R. H., Khuri, A. I., and Vining, G. 1992. "Response surface alternatives to the Taguchi robust parameter design approach." The American Statistician 46(2):131-139.
  86. Myers, R. H., Montgomery, D. C., and Vining, G. G. 2002. Generalized linear models: With applications in engineering and the sciences. (1st ed.). New York: John Wiley & Sons.
  87. Nair, V. N. 1992. "Taguchi's parameter design: A panel discussion." Technometrics 34:127-161. https://doi.org/10.1080/00401706.1992.10484904
  88. Nelder, J. A., and Lee, Y. 1998. "Letter to the Editor." Technometrics 40(2):168-175. https://doi.org/10.1080/00401706.1998.10485225
  89. Nelder, J. A., and Lee, Y. 1991. "Generalized linear models for the analysis of Taguchi-type experiments." Applied stochastic models and data analysis 7(1):107-120. https://doi.org/10.1002/asm.3150070110
  90. Nelder, J. A., and Lee, Y. 1998. "Joint modeling of mean and dispersion." Technometrics 40(2):168-171. https://doi.org/10.1080/00401706.1998.10485225
  91. Nha, V. T., Shin, S., and Jeong, S. H. 2013. "Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment." European Journal of Operational Research 229(2):505-517. https://doi.org/10.1016/j.ejor.2013.02.017
  92. Park, C. S., and Cho, B. R. 2003. "Development of robust design under contaminated and non-normal data." Quality Engineering 15(3):463-469. https://doi.org/10.1081/QEN-120018045
  93. Paul, S., and Khuri, A. I. 2000. "Modified ridge analysis under nonstandard conditions." Communications in Statistics-Theory and Methods 29(9-10):2181-2200. https://doi.org/10.1080/03610920008832602
  94. Peterson, J. J. 2000. "A probability-based desirability function for multi-response optimization." Proceedings of the Section on Quality and Productivity, Indianapolis: Annual Meeting of the American Statistical Association.
  95. Phadke, M. S. 1989. Quality engineering using robust design. New Jersey: Prentice-Hall.
  96. Pickle, S., Robinson, T. J., Birch, J. B., and Anderson-Cook, C. M. 2008. "A semi-parametric approach to robust parameter design." Journal of Statistical Planning and Inference 138(1):114-131. https://doi.org/10.1016/j.jspi.2007.05.018
  97. Pignatiello, J., and Ramberg, J. S. 1985. "Discussion of off-line quality control, parameter design, and the Taguchi methods." Journal of Quality Technology 17:198-206. https://doi.org/10.1080/00224065.1985.11978969
  98. Pledger, M. 1996. "Observable uncontrollable factors in parameter design." Journal of Quality Technology, 28 (2): 153-162. https://doi.org/10.1080/00224065.1996.11979656
  99. Quesada, G. M. 2003. "Topics in the optimization of response surface and parameter design problems." Doctoral Dissertation, IME department, Penn state University.
  100. Quesada, G. M., and Del Castillo, E. 2004. "Two approaches for improving the dual response method in robust parameter design." Journal of Quality Technology 36:154-168.
  101. Quesada, G. M., Del Castillo, E., and Peterson, J. J. 2004. "A Bayesian approach for multiple response surface optimization in the presence of noise variables." Journal of Applied Statistics 31(3):251-270. https://doi.org/10.1080/0266476042000184019
  102. Ragajopal, R., and Del Castillo, E. 2005. "Model-robust process optimization using Bayesian model averaging." Technometrics 47(20):152-163. https://doi.org/10.1198/004017005000000120
  103. Rajagopal, R., and Del Castillo, E. 2007. "A Bayesian method for robust tolerance control and parameter design." IIE Transactions 38(8):685-697. https://doi.org/10.1080/07408170600692283
  104. Reddy, K., Nishinal, A., and Babu, S. 1998. "Unification of robust design and goal programming for multi-response optimization-a case study." Quality and Reliability Engineering International 13(6):371-383. https://doi.org/10.1002/(SICI)1099-1638(199711/12)13:6<371::AID-QRE127>3.0.CO;2-Z
  105. Robinson, T. J., Borror, C. M., and Myers, R. H. 2004. "Robust parameter design: A review." Quality and Reliability Engineering International 20(1):81-101. https://doi.org/10.1002/qre.602
  106. Robinson, T. J., Wulff, S. S., Montgomery, D. S., and Khuri, A. I. 2006. "Robust parameter design using generalized linear mixed models." Journal of Quality Technology 38:65-75. https://doi.org/10.1080/00224065.2006.11918585
  107. Romano, D., Varetto, M., and Vicario, G. 2004. "Multi-responses robust design: A general framework based on combined array." Journal of Quality Technology 36(1):27-37. https://doi.org/10.1080/00224065.2004.11980250
  108. Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. 1989. "Design and analysis of computer experiments." Statistical Science 4:409-435. https://doi.org/10.1214/ss/1177012413
  109. Shaibu, A. B., and Cho, B. R. 2009. "Another view of dual response surface modeling and optimization in robust parameter design." The International Journal of Advanced Manufacturing Technology 41:631-641. https://doi.org/10.1007/s00170-008-1509-2
  110. Shin, S., and Cho, B. R. 2005. "Bias-specified robust design optimization and analytical solutions." Computers & Industrial Engineering 48:129-148. https://doi.org/10.1016/j.cie.2004.07.011
  111. Shin, S., and Cho, B. R. 2006. "Robust design models for customer specified bounds on process parameters." Journal of Systems Science and Systems Engineering 15(1):2-18. https://doi.org/10.1007/s11518-006-0002-4
  112. Shin, S., and Cho, B. R. 2007. "Integrating a bi-objective paradigm to tolerance optimization." International Journal of Production Research: Special Issue on Advanced Quality Engineering 45:5509-5525.
  113. Shin, S., and Cho, B. R. 2009. "Studies on a bi-objective robust design optimization problem." IIE Transactions, 41:957-968. https://doi.org/10.1080/07408170902789084
  114. Shin, S., Choi, D. H., Truong, N. K.V, Kim, N. A., Chu, N. A., and Jeong, S. H. 2011a. "Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles." International Journal of Pharmaceutics 407(1-2):53-62. https://doi.org/10.1016/j.ijpharm.2011.01.013
  115. Shin, S., Samanlioglu, F., Cho, B. R., and Wiecek, M. M. 2011b. "Computing trade-offs in robust design: Perspectives of the mean squared error." Computers & Industrial Engineering 60:248-255. https://doi.org/10.1016/j.cie.2010.11.006
  116. Shoemaker, A. C., and Tsui, K. L. 1991. "Economical experimentation methods for robust design." Technometrics, 33(4):415-427. https://doi.org/10.1080/00401706.1991.10484870
  117. Steenackers, G., and Guillaume, P. 2008. "Bias-specified robust design optimization: A generalized mean squared error approach." Computers & Industrial Engineering 54:259-268. https://doi.org/10.1016/j.cie.2007.07.007
  118. Steuer, R. E. 1986. Multiple criteria optimization: Theory, computation and Application. New York: John Wiley & Sons.
  119. Steuer, R. E., and Choo, E. U. 1983. "An interactive weighted Tchebycheff procedure for multiple objective programming." Mathematical Programming 26:326-344. https://doi.org/10.1007/BF02591870
  120. Taguchi, G. 1986. Introduction to quality engineering: Designing quality into products and processes. White Plains, New York: Kraus International Publications.
  121. Taguchi, G. 1987. System of experimental design: engineering methods to optimize quality and minimize cost. White Plains, New York: Kraus International Publications.
  122. Taguchi, G., and Wu, Y. 1979. Introduction to off-line quality control. Tokyo: Central Japan Quality Control Association.
  123. Tan, M. H. T., and Ng, S. H. 2009. "Estimation of the mean and variance response surfaces when the means and variances of the noise variables are unknown." IIE Transactions 41(11):942-956. https://doi.org/10.1080/07408170902735418
  124. Tang, L. C., and Xu, K. 2002. "A unified approach for dual response surface optimization." Journal of Quality Technology 34(4):437-447. https://doi.org/10.1080/00224065.2002.11980175
  125. Tarantola, A. 1987. "Inverse problem theory: Methods for data fitting and model parameter estimation." Amsterdam: Elsevier Science.
  126. Tarantola, A. 2005. "Inverse problem theory and methods for model parameter estimation." Philadelphia: Society for Industrial and Applied Mathematics.
  127. Tind, J., and Wiecek, M. M. 1999. "Augmented Lagrangian and Tchebycheff approaches in multiple objective programming." Journal of Global Optimization 14:251-266. https://doi.org/10.1023/A:1008314306344
  128. Truong, N. K. V., and Shin, S. 2012. "Development of a new robust design method based on Bayesian perspectives." International Journal of Quality Engineering and Technology 3(1):50-78. https://doi.org/10.1504/IJQET.2012.046157
  129. Truong, N. K. V., and Shin, S. 2013. "A new robust design method from an inverse-problem perspective." International Journal of Quality Engineering and Technology 3(3):243-271. https://doi.org/10.1504/IJQET.2013.053277
  130. Tsui, K. L. 1992. "An overview of Taguchi method and newly developed statistical methods for robust design." IIE Transactions 24(5):44-57. https://doi.org/10.1080/07408179208964244
  131. Tsui, K. L. 1996. "A critical look at Taguchi's modeling approach for robust design." Journal of Applied Statistics 23(1):81-95 https://doi.org/10.1080/02664769624378
  132. Vanli, O. A., and Del Castillo, E. 2009. "Bayesian approaches for on-line robust parameter design." IIE Transactions 41(4):359-371. https://doi.org/10.1080/07408170802108534
  133. Vanli, O. A., Zhang, C., and Wang, B. 2013. "An adaptive Bayesian approach for robust parameter design with observable time series noise factors." IIE Transactions 45(4):374-390. https://doi.org/10.1080/0740817X.2012.689123
  134. Vining, G. G., and Bohn, L. L. 1998. "Response surfaces for the mean and variance using a non-parametric approach." Journal of Quality Technology 30(3):282-292. https://doi.org/10.1080/00224065.1998.11979856
  135. Vining, G. G., and Myers, R. H. 1990. "Combining Taguchi and response surface philosophies: A dual response approach." Journal of Quality Technology 22:38-45. https://doi.org/10.1080/00224065.1990.11979204
  136. Welch, W. J., and Sacks, J. 1991. "A system for quality improvement via computer experiments." Communications in statistics-Theory and methods 20:477-495. https://doi.org/10.1080/03610929108830510
  137. Welch, W. J., Yu, T. K., Kang, S. M., and Sacks, J. 1990. "Computer experiments for quality control by parameter design." Journal of Quality Technology 22:15-22. https://doi.org/10.1080/00224065.1990.11979201
  138. Wolfinger, R. D., and Randall, D. T. 1998. "Joint estimation of location, dispersion, and random effects in robust design." Technometrics 40(1):62-71. https://doi.org/10.1080/00401706.1998.10485482
  139. Yohai, V., Stahel, W. A., and Zamar, R. H. 1991. "A procedure for robust estimation and inference in linear regression." Directions in Robust Statistics and Diagnostics, The IMA Volumes in Mathematics and Its applications 34:365-374.
  140. Yum, B. J., Kim, S. J., Seo, S. K., Byun, J. H., and Lee S. H. 2013. "The Taguchi robust design method: Current status and future directions." Journal of the Korean Institute of Industrial Engineers 39(5):325-341. https://doi.org/10.7232/JKIIE.2013.39.5.325
  141. Zadeh, L. A. 1963. "Optimality and non-scalar-valued performance criteria." IEEE Transactions, Automation Control, AC-8: 59-60.
  142. Zhou, X. J., Ma, Y. Z., Tu, Y. L., and Feng, Y. 2013. "Ensemble of surrogate for dual response surface modeling in robust parameter design." Quality and Reliability Engineering International 29(2):173-197. https://doi.org/10.1002/qre.1298
  143. Zhu, Y., Zeng, P., and Jennings, K. 2007. "Optimal compound orthogonal arrays and single arrays for robust parameter design experiments." Technometrics, 49(4):440-453. https://doi.org/10.1198/004017007000000029