• 제목/요약/키워드: ROS levels

검색결과 687건 처리시간 0.027초

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • 제17권2호
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

Suppression of Arsenic Trioxide-induced Apoptosis in HeLa Cells by N-Acetylcysteine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.18-25
    • /
    • 2008
  • Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular ${O_2}^{{\cdot}-}$ levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of ${O_2}^{{\cdot}-}$.

Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향 (Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells)

  • 김민혜;김안근
    • 약학회지
    • /
    • 제51권1호
    • /
    • pp.75-82
    • /
    • 2007
  • Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.

허용변화한계법(Limits of Acceptable Change: LAC)과 휴양기회분포(Recreation Opportunity Spectrum: ROS)를 적용한 갯벌자원 평가 (Evaluation of Wetland as Application on Limits of Acceptable Change: LAC.Recreation Opportunity Spectrum: ROS Methods)

  • 김진선
    • 한국조경학회지
    • /
    • 제31권4호
    • /
    • pp.57-66
    • /
    • 2003
  • The purpose of this study is to evaluate the resource value of existing mud flats in JANGWHARI, KANGWHADO, as strategies for ecotourism. The research methods used in this study are Limits of Acceptable Change(LAC), and Recreation Opportunity Spectrum(ROS). The LAC process draws attention to the existing area conditions that are judged to be acceptable. Managers must define desired area conditions and undertake actions to maintain or achieve these conditions. The ROS is within each of the recreation opportunity classes identified as being used at the regional level. The Results of this study are as follows: 1) The Opportunity Class of the ROS is ecological, physical, social, managerial setting as primitive, semi-primitive. non-motorized, semi-primitive$.$motorized, and roaded natural. 2) The indicator of the LAC is ecological, physical, social, and managerial setting; the indicator of ecological is wildlife populations, water quality, road paving; the indicator of physical is facilities; the indicator of social is visitor needs for knowledge, adventure, eco-experience, and environmental education programs; and, the indicator of managerial is limits of law, and degree of management. 3) Currently, the Opportunity Class of the ROS of JANGWHARI, KANGWHADO is levels II-III, and the Opportunity Class of the suggested ROS is levels I-II. 4) This paper describes strategies for mud flat area management: detection of water quality, resolving problems of equipment, supply of both environmental education programs and guide equipment.

Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation

  • Shin, Hyejin;Choi, Soyoung;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.125-131
    • /
    • 2014
  • Objective: Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods: To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with $1-{\mu}M$ 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-$H_2DCFDA$). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results: We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion: During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation.

Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation

  • Farh, Mohamed El-Agamy;Kim, Yu-Jin;Abbai, Ragavendran;Singh, Priyanka;Jung, Ki-Hong;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.332-340
    • /
    • 2020
  • Background: The valuable medicinal plant Panax ginseng has high pharmaceutical efficacy because it produces ginsenosides. However, its yields decline because of a root-rot disease caused by Ilyonectria mors-panacis. Because species within Ilyonectria showed variable aggressiveness by altering ginsenoside concentrations in inoculated plants, we investigated how such infections might regulate the biosynthesis of ginsenosides and their related signaling molecules. Methods: Two-year-old ginseng seedlings were treated with I. mors-panacis and I. robusta. Roots from infected and pathogen-free plants were harvested at 4 and 16 days after inoculation. We then examined levels or/and expression of genes of ginsenosides, salicylic acid (SA), jasmonic acid (JA), and reactive oxygen species (ROS). We also checked the susceptibility of those pathogens to ROS. Results: Ginsenoside biosynthesis was significantly suppressed and increased in response to infection by I. mors-panacis and I. robusta, respectively. Regulation of JA was significantly higher in I. robusta-infected roots, while levels of SA and ROS were significantly higher in I. mors-panacis-infected roots. Catalase activity was significantly higher in I. robusta-infected roots followed in order by mock roots and those infected by I. mors-panacis. Moreover, I. mors-panacis was resistant to ROS compared with I. robusta. Conclusion: Infection by the weakly aggressive I. robusta led to the upregulation of ginsenoside production and biosynthesis, probably because only a low level of ROS was induced. In contrast, the more aggressive I. mors-panacis suppressed ginsenoside biosynthesis, probably because of higher ROS levels and subsequent induction of programmed cell death pathways. Furthermore, I. mors-panacis may have increased its virulence by resisting the cytotoxicity of ROS.

Supplementation of cryoprotective extender with resveratrol decreases apoptosis index and reactive oxygen species levels in post-thaw dog sperm

  • Bang, Seonggyu;Tanga, Bereket Molla;Qamar, Ahmad Yar;Fang, Xun;Seong, Gyeonghwan;Nabeel, Abdelbagi Hamad Talha;Yu, Iljeoung;Cho, Jongki
    • 대한수의학회지
    • /
    • 제61권4호
    • /
    • pp.29.1-29.7
    • /
    • 2021
  • Resveratrol (RSV, 3,5,4'-trihydroxytrans-stilbene) protects sperm from cryo-induced damage in various animal and human species. In this study, we aimed to assess the effect of dog sperm cryoprotective extender containing RSV on the quality of post-thaw dog sperm. Sperm were collected from 4 Beagles and supplemented with different concentrations of RSV (0, 100, 200, and 400 µM). After thawing, apoptosis index, and reactive oxygen species (ROS) levels were assessed to determine post-thaw sperm quality. Dog sperm cryopreserved with 400 µM RSV showed significant improvement in post-thaw sperm quality with lower apoptosis index and ROS levels (p < 0.05). Our results showed that the supplementation of dog sperm cryoprotective extender with RSV at a concentration of 400 µM improved the post-thaw dog sperm quality in the term of sperm ROS production and apoptosis. In addition, we emphasize the necessity of testing the ROS levels and apoptosis index using flow cytometry to determine the quality of post-thaw semen.

Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy

  • Song, Seon Beom;Jang, So-Young;Kang, Hyun Tae;Wei, Bie;Jeoun, Un-woo;Yoon, Gye Soon;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.503-514
    • /
    • 2017
  • Nicotinamide (NAM) plays essential roles in physiology through facilitating $NAD^+$ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of $NAD^+/NADH$ and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (${\Delta}_{{\Psi}m}$); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases ${\Delta}_{{\Psi}m}$. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and ${\Delta}_{{\Psi}m}$ were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased ${\Delta}_{{\Psi}m}$ via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular $NAD^+$ redox modulation, and emphasized the importance of the $NAD^+/NADH$ ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.

Detection of Mitochondrial Reactive Oxygen Species in Living Rat Trigeminal Caudal Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제40권2호
    • /
    • pp.103-109
    • /
    • 2015
  • Growing evidence suggests that mitochondrial reactive oxygen species (ROS) are involved in various pain states. This study was performed to investigate whether ROS-induced changes in neuronal excitability in trigeminal subnucleus caudalis are related to ROS generation in mitochondria. Confocal scanning laser microscopy was used to measure ROS-induced fluorescence intensity in live rat trigeminal caudalis slices. The ROS level increased during the perfusion of malate, a mitochondrial substrate, after loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), an indicator of the intracellular ROS; the ROS level recovered to the control condition after washout. When pre-treated with phenyl N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL), malate-induced increase of ROS level was suppressed. To identify the direct relation between elevated ROS levels and mitochondria, we applied the malate after double-loading of $H_2DCF-DA$ and chloromethyl-X-rosamine (CMXRos; MitoTracker Red), which is a mitochondria-specific fluorescent probe. As a result, increase of both intracellular ROS and mitochondrial ROS were observed simultaneously. This study demonstrated that elevated ROS in trigeminal subnucleus caudalis neuron can be induced through mitochondrial-ROS pathway, primarily by the leakage of ROS from the mitochondrial electron transport chain.

ROLE OF REACTIVE OXYGEN SPECIES IN MALE INFERTILITY

  • Sharma, Rakesh K.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 2000년도 제39차 춘계 학술대회
    • /
    • pp.13-28
    • /
    • 2000
  • Human spermatozoa exhibit a capacity to generate ROS and initiate peroxidation of the unsaturated fatty acids in the sperm plasma membrane, which plays a key role in the etiology of male infertility. The short half-life and limited diffusion of these molecules is consistent with their physiologic role in key biological events such as acrosome reaction and hyperactivation. The intrinsic reactivity of these metabolites in peroxidative damage induced by ROS, particularly $H_2O_2$ and the superoxide anion, has been proposed as a major cause of defective sperm function in cases of male infertility. The number of antioxidants known to attack different stages of peroxidative damage is growing, and it will be of interest to compare alpha-tocopherol and ascorbic acid with these for their therapeutic potential in vitro and in vivo. Both spermatozoa and leukocytes generate ROS, although leukocytes produce much higher levels. The clinical significance of leukocyte presence in semen is controversial. Seminal plasma confers some protection against ROS damage because it contains enzymes that scavenge ROS, such as catalase and superoxide dismutase. A variety of defense mechanisms comprising a number of antioxidants can be employed to reduce or overcome oxidative stress caused by excessive ROS. Determination of male infertility etiology is important, as it will help us develop effective therapies to overcome excessive ROS generation. ROS can have both beneficial and detrimental effects on the spermatozoa and the balancing between the amounts of ROS produced and the amounts scavenged at any moment will determine whether a given sperm function will be promoted or jeopardized. Accurate assessment of ROS levels and, subsequently, OS is Vital, as this will help clinicians both elucidate the fertility status and identify the subgroups of patients that respond or do not respond to these therapeutic strategies. The overt commercial claims of antioxidant benefits and supplements for fertility purposes must be cautiously looked into, until proper multicentered clinical trials are studied. From the current data it appears that no Single adjuvant will be able to enhance the fertilizing capacity of sperm in infertile men, and a combination of the possible strategies that are not toxic at the dosage used would be a feasible approach.

  • PDF