DOI QR코드

DOI QR Code

Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy

  • Song, Seon Beom (Department of Life Science, University of Seoul) ;
  • Jang, So-Young (Department of Life Science, University of Seoul) ;
  • Kang, Hyun Tae (Department of Life Science, University of Seoul) ;
  • Wei, Bie (Department of Life Science, University of Seoul) ;
  • Jeoun, Un-woo (Department of Biomedical Science and Department of Biochemistry, Ajou University School of Medicine) ;
  • Yoon, Gye Soon (Department of Biomedical Science and Department of Biochemistry, Ajou University School of Medicine) ;
  • Hwang, Eun Seong (Department of Life Science, University of Seoul)
  • Received : 2017.05.19
  • Accepted : 2017.06.15
  • Published : 2017.07.31

Abstract

Nicotinamide (NAM) plays essential roles in physiology through facilitating $NAD^+$ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of $NAD^+/NADH$ and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (${\Delta}_{{\Psi}m}$); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases ${\Delta}_{{\Psi}m}$. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and ${\Delta}_{{\Psi}m}$ were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased ${\Delta}_{{\Psi}m}$ via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular $NAD^+$ redox modulation, and emphasized the importance of the $NAD^+/NADH$ ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.

Keywords

References

  1. Ayoub, I.A., and Maynard, K.I. (2002). Therapeutic window for nicotinamide following transient focal cerebral ischemia. Neuroreport 13, 213-216. https://doi.org/10.1097/00001756-200202110-00008
  2. Bayrakdar, E.T., Armagan, G., Uyanikgil, Y., Kanit, L., Koylu, E., and Yalcin, A. (2014). Ex vivo protective effects of nicotinamide and 3-aminobenzamide on rat synaptosomes treated with Abeta(1-42). Cell Biochem. Funct. 32, 557-564. https://doi.org/10.1002/cbf.3049
  3. Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabo, I., and Zoratti, M. (1992). Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J. Biol. Chem. 267, 2934-2939.
  4. Cheng, Y., Gulbins, E., and Siemen, D. (2011). Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol. Biochem. 27, 191-200. https://doi.org/10.1159/000327944
  5. Choi, H.J., Jang, S.Y., and Hwang, E.S. (2015). High-dose nicotinamide suppresses ROS generation and augments population expansion during CD8(+) T cell activation. Mol. Cells 38, 918-924. https://doi.org/10.14348/molcells.2015.0168
  6. Chong, Z.Z., Lin, S.H., and Maiese, K. (2002). Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury. J. Vasc. Res. 39, 131-147. https://doi.org/10.1159/000057762
  7. Crowley, C.L., Payne, C.M., Bernstein, H., Bernstein, C., and Roe, D. (2000). The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death Differ. 7, 314-326. https://doi.org/10.1038/sj.cdd.4400658
  8. Dengjel, J., and Abeliovich, H. (2017). Roles of mitophagy in cellular physiology and development. Cell Tissue Res. 367, 95-109. https://doi.org/10.1007/s00441-016-2472-0
  9. Du, H., and Yan, S.S. (2010). Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Biochim. Biophys. Acta. 1802, 198-204. https://doi.org/10.1016/j.bbadis.2009.07.005
  10. Eiyama, A., and Okamoto, K. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101. https://doi.org/10.1016/j.ceb.2015.01.002
  11. Feldman, J.L., Dittenhafer-Reed, K.E., Kudo, N., Thelen, J.N., Ito, A., Yoshida, M., and Denu, J.M. (2015). Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation. Biochemistry 54, 3037-3050. https://doi.org/10.1021/acs.biochem.5b00150
  12. Ghosh, D., LeVault, K.R., Barnett, A.J., and Brewer, G.J. (2012). A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons. J Neurosci. 32, 5821-5832. https://doi.org/10.1523/JNEUROSCI.6192-11.2012
  13. Hafner, A.V., Dai, J., Gomes, A.P., Xiao, C.Y., Palmeira, C.M., Rosenzweig, A., and Sinclair, D.A. (2010). Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses agerelated cardiac hypertrophy. Aging (Albany NY). 2, 914-923.
  14. Harlan, B.A., Pehar, M., Sharma, D.R., Beeson, G., Beeson, C.C., and Vargas, M.R. (2016). Enhancing NAD+ salvage pathway reverts the toxicity of primary astrocytes expressing amyotrophic lateral sclerosislinked mutant superoxide dismutase 1 (SOD1). J. Biol. Chem. 291, 10836-10846. https://doi.org/10.1074/jbc.M115.698779
  15. Huang, J., Gan, Q., Han, L., Li, J., Zhang, H., Sun, Y., Zhang, Z., and Tong, T. (2008). SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3, e1710. https://doi.org/10.1371/journal.pone.0001710
  16. Huang, J.Y., Hirschey, M.D., Shimazu, T., Ho, L., and Verdin, E. (2010). Mitochondrial sirtuins. Biochim. Biophys. Acta. 1804, 1645-1651. https://doi.org/10.1016/j.bbapap.2009.12.021
  17. Hwang, E.S. and Song, S.B. (2017). Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol. Life Sci. DOI 10.1007/s00018-017-2527-8.
  18. Hwang, E.S., Yoon, G., and Kang, H.T. (2009). A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci. 66, 2503-2524. https://doi.org/10.1007/s00018-009-0034-2
  19. Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
  20. Jendrach, M., Pohl, S., Voth, M., Kowald, A., Hammerstein, P., and Bereiter-Hahn, J. (2005). Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech. Ageing Dev. 126, 813-821. https://doi.org/10.1016/j.mad.2005.03.002
  21. Kaneko S., Wang J., Kaneko M., Yiu G., Hurrell J.M., Chitnis T., Khoury S.J., and He Z. (2006). Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. 26, 9794-9804. https://doi.org/10.1523/JNEUROSCI.2116-06.2006
  22. Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438. https://doi.org/10.1111/j.1474-9726.2009.00487.x
  23. Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
  24. Kim, I., Rodriguez-Enriquez, S., and Lemasters, J.J. (2007). Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245-253. https://doi.org/10.1016/j.abb.2007.03.034
  25. Kiuchi, K., Yoshizawa, K., Shikata, N., Matsumura, M., Tsubura, A. (2002). Nicotinamide prevents N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats and C57BL mice. Exp. Eye Res. 74, 383-392. https://doi.org/10.1006/exer.2001.1127
  26. Klaidman, L.K., Mukherjee, S.K., and Adams, J.D., Jr. (2001). Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide. Biochim. Biophys. Acta. 1525, 136-148. https://doi.org/10.1016/S0304-4165(00)00181-1
  27. Kushnareva, Y., Murphy, A. N., and Andreyev, A. (2002). Complex Imediated reactive oxygen species generation: modulation by cytochrome c and NAD(P).+ oxidation-reduction state. Biochem. J. 368, 545-553. https://doi.org/10.1042/bj20021121
  28. Lee, H.C., Yin, P.H., Chi, C.W., and Wei, Y.H. (2002). Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 9, 517-526. https://doi.org/10.1007/BF02254978
  29. Lee, E.J., Wu, T.S., Chang, G.L., Li, C.Y., Chen, T.Y., Lee, M.Y., Chen, H.Y., and Maynard, K.I. (2006). Delayed treatment with nicotinamide inhibits brain energy depletion, improves cerebral microperfusion, reduces brain infarct volume, but does not alter neurobehavioral outcome following permanent focal cerebral ischemia in Sprague Dawley rats. Curr. Neurovasc. Res. 3, 203-213. https://doi.org/10.2174/156720206778018749
  30. Lee, H.I., Jang, S.Y., Kang, H.T., and Hwang, E.S. (2008). p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated cells. Biochem. Biophys. Res. Commun. 368, 298-304. https://doi.org/10.1016/j.bbrc.2008.01.082
  31. Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
  32. Leung, A.W., and Halestrap, A.P. (2008). Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim. Biophys. Acta 1777, 946-952. https://doi.org/10.1016/j.bbabio.2008.03.009
  33. Li, F., Chong, Z.Z., and Maiese, K. (2004). Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide. Front. Biosci. 9, 2500-2520. https://doi.org/10.2741/1412
  34. Machida, K. and Osada, H. (2003). Molecular interaction between cyclophilin D and adenine nucleotide translocase in cytochrome c release: does it determine whether cytochrome c release is dependent on permeability transition or not? Ann. N Y Acad. Sci. 1010, 182-185 https://doi.org/10.1196/annals.1299.031
  35. Maiese, K., Chong, Z.Z., Hou, J., Shang, Y.C. (2009). The vitamin nicotinamide: translating nutrition into clinical care. Molecules 14, 3446-3485. https://doi.org/10.3390/molecules14093446
  36. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221. https://doi.org/10.1083/jcb.200910140
  37. Menzies, K.J., and Hood, D.A. (2012). The role of SirT1 in muscle mitochondrial turnover. Mitochondrion 12, 5-13. https://doi.org/10.1016/j.mito.2011.03.001
  38. Milne, J.C., Lambert, P.D., Schenk, S., Carney, D.P., Smith, J.J., Gagne, D.J., Jin, L., Boss, O., Perni, R.B., Vu, C.B., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716. https://doi.org/10.1038/nature06261
  39. Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13. https://doi.org/10.1042/BJ20081386
  40. Murray, M.F. (2003). Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin. Infect Dis. 36, 453-460. https://doi.org/10.1086/367544
  41. Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803. https://doi.org/10.1083/jcb.200809125
  42. Oblong, J.E. (2014). The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair (Amst). 23, 59-63. https://doi.org/10.1016/j.dnarep.2014.04.005
  43. Olmos, Y., Sanchez-Gomez, F.J., Wild, B., Garcia-Quintans, N., Cabezudo, S., Lamas, S., and Monsalve, M. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC 1alpha complex. Antioxid Redox Signa. 19, 1507-1521. https://doi.org/10.1089/ars.2012.4713
  44. Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1998). Imaging the mitochondrial permeability transition pore in intact cells. Biofactors 8, 263-272. https://doi.org/10.1002/biof.5520080314
  45. Rao, V.K., Carlson, E.A., and Yan, S.S. (2014). Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta. 1842, 1267-1272. https://doi.org/10.1016/j.bbadis.2013.09.003
  46. Rennie, G., Chen, A.C., Dhillon, H., Vardy, J., and Damian, D.L. (2015). Nicotinamide and neurocognitive function. Nutr. Neurosci. 18, 193-200. https://doi.org/10.1179/1476830514Y.0000000112
  47. Sakakibara, Y., Mitha, A.P., Ogilvy, C.S., Maynard, K.I. (2000). Posttreatment with nicotinamide (vitamin B(3)) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague-Dawley and wistar rats. Neurosci Lett. 281,111-114. https://doi.org/10.1016/S0304-3940(00)00854-5
  48. Santidrian, A.F., LeBoeuf, S.E., Wold, E.D., Ritland, M., Forsyth, J.S., Felding, B.H. (2014). Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer. DNA Repair (Amst) 23, 79-87. https://doi.org/10.1016/j.dnarep.2014.08.006
  49. Sasaki, T., Maier, B., Bartke, A., and Scrable, H. (2006). Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5, 413-422. https://doi.org/10.1111/j.1474-9726.2006.00235.x
  50. Saunders, L.R., Sharma, A.D., Tawney, J., Nakagawa, M., Okita, K., Yamanaka, S., Willenbring, H., and Verdin, E. (2010). miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2, 415-431.
  51. Schneider, M.P., Delles, C., Schmidt, B.M., Oehmer, S., Schwarz, T.K., Schmieder, R.E., and John, S. (2005). Superoxide scavenging effects of N-acetylcysteine and vitamin C in subjects with essential hypertension. Am. J. Hypertens. 18, 1111-1117. https://doi.org/10.1016/j.amjhyper.2005.02.006
  52. Starkov, A.A., and Fiskum, G. (2003). Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P).H redox state. J. Neurochem. 86, 1101-1107. https://doi.org/10.1046/j.1471-4159.2003.01908.x
  53. Stevens, M.J., Li, F., Drel, V.R., Abatan, O.I., Kim, H., Burnett, D., Larkin, D., and Obrosova, I.G. (2007). Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J. Pharmacol. Exp. Ther. 320, 458-464.
  54. Stowe, D.F., and Camara, A.K. (2009). Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox. Signal.11, 1373-1414. https://doi.org/10.1089/ars.2008.2331
  55. Thompson, A.M., Wagner, R., and Rzucidlo, E.M. (2014). Agerelated loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am. J. Physiol. Heart Circ. Physiol. 307, H533-541. https://doi.org/10.1152/ajpheart.00871.2013
  56. Todisco, S., Agrimi, G., Castegna, A., and Palmieri, F. (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem. 281, 1524-1531. https://doi.org/10.1074/jbc.M510425200
  57. Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446. https://doi.org/10.1038/sj.emboj.7601963
  58. Vercesi, A.E., Castilho, R.F., Meinicke, A.R., Valle, V.G., Hermes-Lima, M., and Bechara, E.J. (1994). Oxidative damage of mitochondria induced by 5-aminolevulinic acid: role of $Ca^{2+}$ and membrane protein thiols. Biochim. Biophys. Acta 1188, 86-92. https://doi.org/10.1016/0005-2728(94)90025-6
  59. Villalba, J M., and Alcain, F.J. (2012). Sirtuin activators and inhibitors. Biofactors 38, 349-359. https://doi.org/10.1002/biof.1032
  60. Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J.J., Lamming, D.W., Souza-Pinto, N.C., Bohr, V.A., Rosenzweig, A., et al. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107. https://doi.org/10.1016/j.cell.2007.07.035
  61. Yao, Y., Yang, Y., and Zhu, W.G. (2014). Sirtuins: nodes connecting aging, metabolism and tumorigenesis. Curr. Pharm. Des. 20, 1614-1624. https://doi.org/10.2174/13816128113199990513
  62. Zhang, J., Fitsanakis, V.A., Gu, G., Jing, D., Ao, M., Amarnath, V., and Montine, T.J. (2003). Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J. Neurochem. 84, 336-346. https://doi.org/10.1046/j.1471-4159.2003.01525.x
  63. Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909-950. https://doi.org/10.1152/physrev.00026.2013

Cited by

  1. Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent vol.8, pp.2235-2988, 2018, https://doi.org/10.3389/fcimb.2018.00164
  2. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? pp.1573-7365, 2019, https://doi.org/10.1007/s11011-019-0388-6
  3. Enhancement of Replication and Differentiation Potential of Human Bone Marrow Stem Cells by Nicotinamide Treatment vol.11, pp.1, 2017, https://doi.org/10.15283/ijsc18033
  4. PTENα regulates mitophagy and maintains mitochondrial quality control vol.14, pp.10, 2018, https://doi.org/10.1080/15548627.2018.1489477
  5. Sirt5 Attenuates Cisplatin-Induced Acute Kidney Injury through Regulation of Nrf2/HO-1 and Bcl-2 vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4745132
  6. Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle vol.15, pp.5, 2017, https://doi.org/10.1371/journal.pgen.1008184
  7. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy vol.39, pp.1, 2017, https://doi.org/10.1146/annurev-nutr-082018-124643
  8. Vitamin C Attenuates Sodium Fluoride-Induced Mitochondrial Oxidative Stress and Apoptosis via Sirt1-SOD2 Pathway in F9 Cells vol.191, pp.1, 2017, https://doi.org/10.1007/s12011-018-1599-0
  9. Quercetin Attenuates Atherosclerosis via Modulating Oxidized LDL-Induced Endothelial Cellular Senescence vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.00512
  10. Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells vol.7, pp.1, 2017, https://doi.org/10.1039/c9en00523d
  11. The effects of nicotinamide on reinstatement to cocaine seeking in male and female Sprague Dawley rats vol.237, pp.3, 2017, https://doi.org/10.1007/s00213-019-05404-y
  12. The Role of Nicotinamide in Cancer Chemoprevention and Therapy vol.10, pp.3, 2017, https://doi.org/10.3390/biom10030477
  13. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? vol.23, pp.6, 2017, https://doi.org/10.1093/ijnp/pyaa008
  14. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090901
  15. Hyperoxia exposure arrests alveolarization in neonatal rats via PTEN-induced putative kinase 1-Parkin and Nip3-like protein X-mediated mitophagy disorders vol.46, pp.6, 2017, https://doi.org/10.3892/ijmm.2020.4766
  16. Effect of nicotinamide supplementation in in vitro fertilization medium on bovine embryo development vol.87, pp.10, 2020, https://doi.org/10.1002/mrd.23417
  17. TERT promoter regulating melittin expression induces apoptosis and G 0 /G 1 cell cycle arrest in esophageal carcinoma cells vol.21, pp.1, 2020, https://doi.org/10.3892/ol.2020.12277
  18. Down‐regulation of miR‐383‐5p suppresses apoptosis in oxidative stress rat hepatocytes by targeting Bcl2 vol.104, pp.6, 2020, https://doi.org/10.1111/jpn.13328
  19. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity vol.10, pp.1, 2017, https://doi.org/10.3390/cells10010079
  20. Effect of Heat Treatment on the Anticancer Activity of Houttuynia cordata Thunb Aerial Stem Extract in Human Gastric Cancer SGC-7901 Cells vol.73, pp.1, 2017, https://doi.org/10.1080/01635581.2020.1737153
  21. The Dawn of Mitophagy: What Do We Know by Now? vol.19, pp.2, 2017, https://doi.org/10.2174/1570159x18666200522202319
  22. Small-Molecule Inhibitors of Reactive Oxygen Species Production vol.64, pp.9, 2021, https://doi.org/10.1021/acs.jmedchem.0c01914