• Title/Summary/Keyword: ROS Generation

Search Result 621, Processing Time 0.028 seconds

Glycosylation modification of human prion protein provokes apoptosis in HeLa cells in vitro

  • Yang, Yang;Chen, Lan;Pan, Hua-Zhen;Kou, Yi;Xu, Cai-Min
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • We investigate the correlation between the glycosylation modified prion proteins and apoptosis. The wild-type PRNP gene and four PRNP gene glycosylated mutants were transiently expressed in HeLa cells. The effect of apoptosis induced by PrP mutants was confirmed by MTT assay, Hochest staining, Annexin-V staining and PI staining. ROS test detected ROS generation within the cells. The mitochondrial membrane potential was analyzed by the flow cytometry. The expression levels of Bcl-xL, Bax, cleaved Caspase-9 proteins were analyzed by Western Blot. The results indicated that the expressed non-glycosylated PrP in HeLa cells obviously induced apoptosis, inhibited the growth of cells and reduced the mitochondrial membrane potential, and more ROS generation and low levels of the apoptosis-related proteins Bcl-xL, the activated the cleaved Caspase-9 proteins were found. The apoptosis induced by non-glycosylated PrP demonstrates that its underlying mechanism correlates with the mitochondria-mediated signal transduction pathway.

Preventive Effect of Puerariae Radix and Rehmanniae Radix Preparata on Cisplatin-induced Rat Mesangial Cell Apoptosis (갈근(葛根)과 숙지황(熟地黃) 추출물의 cisplatin에 의한 rat mesangial cell의 apoptosis에 대한 보호효과)

  • Ju, Sung-Min;Park, Jin-Mo;Jeon, Byung-Jae;Yang, Hyun-Mo;Hong, Jae-Eui;Kim, In-Gyu;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1140-1146
    • /
    • 2008
  • One of the major side effects of cisplatin is nephrotoxicity, leading to acute renal failure. Recent study has suggested a role of hydroxyl radicals and p53 in renal cell injury by cisplatin. This study determined the possible involvement of oxidative stress in p53 activation. In rat mesangial cells, cisplatin treatment induced apoptosis and p53 activation. Pifithrin-$\alpha$, a pharmacological inhibitor of p53, suppressed cisplatin-induced apoptosis. Cisplatin also induced reactive oxidative species (ROS) generation. Of interest, cisplatin-induced apoptosis was prevented by N-acetyl-cysteine (NAC), a general antioxidant. NAC diminished p53 activation during cisplatin treatment. Puerariae Radix and Rehmanniae Radix Preparata with antioxidative activity were reduced the cisplatin-induced ROS generation, caspase-3 activity and p53 activation. In conclusion, ROS may contribute to p53 activation to initiate cisplatin-induced apoptosis in rat mesangial cells. In result, antioxidative effect of Puerariae Radix and Rehmanniae Radix Preparata prevented cisplatin-induced apoptosis through inhibition of p53 activation.

Protective Effect of Cheonjeongkibo-Dan UV-Induced Cellular Damage in Human Dermal Fibroblast (천정기보단(天精氣保丹)의 자외선에 의한 세포 손상 억제 효과)

  • Lee, Ghang-Tai;Park, Si-Jun;Lee, Jung-No;Lee, Kwang-Sik;Kim, Dae-Sung;Mun, Yeun-Ja;Lee, Kun-Kuk;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.950-955
    • /
    • 2010
  • In this study, we prepared CheonJeongKiBo-Dan(7 oriental medicinal plants, 7OMP: Astragalus Membranaceus root, Panax Ginseng root, Glycyrrhiza Glabra (licorice) root, Schizandra Chinensis fruit, Polygonatum Odoratum, Rehmannia Glutinosa root, Paeonia Albiflora root) by extracting them in one reactor and studied its efficacies on skin. UV irradiation has been suggested as a major cause of photoaging in skin. In order to investigate protective effects against UV-B induced cellular damage, 7OMP was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, reactive oxygen species (ROS) generation, phosphorylation of ATR and p53 in human dermal fibroblast cell system after UV-B irradiation. 7OMP reduced UV-B-induced cellular damage in HDFs cells, and inhibited ROS generation. UV-B-induced toxicity accompanying ROS production and the resultant DNA damage are responsible for activation of ATR, p53 and Bad. In this study, 7OMP hampered phosphorylations of ATR and p53 in human dermal fibroblasts. Therefore, 7OMP may be protective against UV-induced skin photoaging.

The Protective Effects of Chilgi-tang on Oxidative Stress by Glucose Deprivation in Neuro 2A Cells (Glucose deprivation으로 유발된 Neuro 2A 세포의 산화적 손상에 대한 칠기탕(七氣湯)의 보호효과)

  • Seong, Ki-Ho;Lee, Jung-Sup;Shin, Sun-Ho
    • The Journal of Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.1-18
    • /
    • 2010
  • Objective: The water extract of Chilgi-tang (CGT) has been traditionally used in treatment of heart diseases caused by stress in Oriental Medicine. However, little is known about the mechanism by which CGT rescues neuronal cells from injury damage. Therefore, this study was designed to evaluate the protective effects of CGT on Neuro-2A cells by glucose deprivation-induced cell death. Methods: We investigated how cell death induced by glucose deprivation was associated with increased reactive oxygen species (ROS) generation. Result: The CGT treatment prior to glucose deprivation insult significantly reduced the number of cell deaths and the glucose deprivation-induced increase in ROS. Nitric oxide (NO) was also attenuated by CGT treatment. In addition, we demonstrated that the anti-cell death effect of CGT was blocked by heme oxygenase-1 (HO-1) activation. Finally, pretreatment of cells with a hemin, HO-1 inducer, reduced glucose deprivation-induced cell death. In contrast, pretreatment of cells with a ZnPP, HO-1 activity inhibitor, attenuated CGT-induced inhibition of cell death. Conclusions: These findings indicate that ROS plays an important role in glucose deprivation-induced cell death and that CGT may prevent glucose deprivation-induced cell death by inhibiting the ROS generation through HO-1 activation in Neuro-2A cells.

NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

  • Kim, Mikyung;Han, Chang-Ho;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smoking-induced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and ${\alpha}$,${\beta}$-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and $-930^{A/G}$ polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.

Picropodophyllotoxin Induces G1 Cell Cycle Arrest and Apoptosis in Human Colorectal Cancer Cells via ROS Generation and Activation of p38 MAPK Signaling Pathway

  • Lee, Seung-On;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Joo, Sang Hoon;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1615-1623
    • /
    • 2021
  • Picropodophyllotoxin (PPT), an epimer of podophyllotoxin, is derived from the roots of Podophyllum hexandrum and exerts various biological effects, including anti-proliferation activity. However, the effect of PPT on colorectal cancer cells and the associated cellular mechanisms have not been studied. In the present study, we explored the anticancer activity of PPT and its underlying mechanisms in HCT116 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to monitor cell viability. Flow cytometry was used to evaluate cell cycle distribution, the induction of apoptosis, the level of reactive oxygen species (ROS), assess the mitochondrial membrane potential (Δψm), and multi-caspase activity. Western blot assays were performed to detect the expression of cell cycle regulatory proteins, apoptosis-related proteins, and p38 MAPK (mitogen-activated protein kinase). We found that PPT induced apoptosis, cell cycle arrest at the G1 phase, and ROS in the HCT116 cell line. In addition, PPT enhanced the phosphorylation of p38 MAPK, which regulates apoptosis and PPT-induced apoptosis. The phosphorylation of p38 MAPK was inhibited by an antioxidant agent (N-acetyl-L-cysteine, NAC) and a p38 inhibitor (SB203580). PPT induced depolarization of the mitochondrial inner membrane and caspase-dependent apoptosis, which was attenuated by exposure to Z-VAD-FMK. Overall, these data indicate that PPT induced G1 arrest and apoptosis via ROS generation and activation of the p38 MAPK signaling pathway.

Protective Effect of Phragmitis Rhizoma against Oxidative Stress-induced DNA Damage and Apoptosis in Chang Liver Cells (산화적 스트레스에 의한 간세포의 DNA 손상 및 apoptosis 유도에 대한 노근 추출물의 보호 효과)

  • Lee, Hui yeong;Hong, Sang hoon;Park, Sang eun
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.6
    • /
    • pp.1269-1284
    • /
    • 2021
  • Objectives: Phragmitis Rhizoma is the fresh or dried rhizome of Phragmites communis Trin., which has been prescribed in traditional Korean medicine to relieve fever and vomiting and to nourish the body fluids. Recently, the protective effect of Phragmitis Rhizoma extract or its components on myelotoxicity and inflammatory responses have been reported, but no study has yet been conducted on oxidative stress. Methods: The present study investigated whether an ethanol extract of Phragmitis Rhizoma (PR) could protect against cellular damage induced by oxidative stress in Chang liver cells. Results: Pretreatment with PR significantly suppressed the hydrogen peroxide (H2O2)-induced reduction of Chang cell viability and generation of reactive oxygen species (ROS), thereby deferring apoptosis. PR also markedly inhibited H2O2-induced comet tail formation and phospho-γH2AX expression, suggesting that PR protected against oxidative stress-mediated DNA damage. PR also effectively prevented the inhibition of ATP synthesis in H2O2-treated Chang cells by inhibiting the loss of mitochondrial membrane potential, indicating that PR maintains energy metabolism through preservation of mitochondrial function while eliminating ROS generated by H2O2. Immunoblotting results indicated that PR attenuated the H2O2-induced downregulation of Bcl-2 and upregulation of Bax expression. Conclusions: PR protects against oxidative injury in Chang liver cells by regulating energy homeostasis via ROS generation blockade, which is at least partly mediated through inactivation of the mitochondria-mediated apoptosis pathway.

Fipronil impairs the fertilization competence of boar spermatozoa

  • Adikari Arachchige Dilki Indrachapa Adikari;Malavige Romesha Chandanee;Byeong-Yeon Kim;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2022
  • Fipronil is a popular insecticide used in both agricultural and domestic fields. Factors that affect sperm and eggs have a direct influence on reproductive outcomes. This study was undertaken to assess the effect of varying concentrations (10 - 200 μM) of fipronil and incubation times (30 min and 2 hrs) on boar spermatozoa. Spermatozoa were evaluated for motility, motion kinematics, viability, chromatin stability, and for the generation of intracellular reactive oxygen species (ROS) and the results were compared to those from corresponding controls. The findings revealed a significant, dose-dependent reduction in sperm motility in all fipronil treatment groups at 30 min of incubation (p < 0.05). A similar dose-dependent reduction in sperm motility was observed subsequent to fipronil exposure for 2 hrs of incubation (p < 0.05). Groups treated with fipronil showed a gradual reduction in motion kinematics (p < 0.05). Moreover, a significantly higher percentage of dead sperm was observed at 200 μM fipronil, as compared to the highest live percentage obtained in controls (p < 0.05). Evaluating the sperm chromatin integrity revealed a significantly higher percentage of damaged chromatin in spermatozoa incubated with 200 μM of fipronil. Moreover, ROS production was significantly higher in fipronil-exposed sperm (p < 0.05). In conclusion, boar spermatozoa incubated with fipronil showed decreased levels of sperm motility and viability, weaker chromatin integrity, and increased levels of intracellular ROS generation, all of which indicate that exposure to fipronil potentially impairs the fertilization competence of boar spermatozoa.

Particulate matter induces ferroptosis by accumulating iron and dysregulating the antioxidant system

  • Minkyung Park;Young-Lai Cho;Yumin Choi;Jeong-Ki Min;Young-Jun Park;Sung-Jin Yoon;Dae-Soo Kim;Mi-Young Son;Su Wol Chung;Heedoo Lee;Seon-Jin Lee
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.96-101
    • /
    • 2023
  • Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells.

Reactive Oxygen Species Mediates Lysophosphatidic Acid-induced Migration of SKOV-3 Ovarian Cancer Cells (SKOV-3 난소암 세포주에서 lysophosphatidic acid 유도 세포의 이동에 있어 활성산소의 역할)

  • Kim, Eun Kyoung;Lee, Hye Sun;Ha, Hong Koo;Yun, Sung Ji;Ha, Jung Min;Kim, Young Whan;Jin, In Hye;Shin, Hwa Kyoung;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1621-1627
    • /
    • 2012
  • Cell motility plays an essential role in many physiological responses, such as development, immune reaction, and angiogenesis. In the present study, we showed that lysophosphatidic acid (LPA) modulates cancer cell migration by regulation of generation of reactive oxygen species (ROS). Stimulation of SKOV-3 ovarian cancer cells with LPA strongly promoted migration. but this migration was completely blocked by pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Inhibition of the ERK pathway had no effect on migration. Stimulation of SKOV-3 ovarian cancer cells with LPA significantly induced the generation of ROS in a time-dependent manner. LPA-induced generation of ROS was significantly blocked by pharmacological inhibition of PI3K or Akt, but inhibition of the ERK signaling pathway had little effect. LPA-induced generation of ROS was blocked by pretreatment of SKOV-3 ovarian cancer cells with an NADPH oxidase inhibitor, whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I had no effect. Scavenging of ROS by N-acetylcysteine completely blocked LPA-induced migration of SKOV-3 ovarian cancer cells. Inhibition of NADPH oxidase blocked LPA-induced migration whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I did not affect LPA-induced migration of SKOV-3 ovarian cancer cells. Given these results, we suggest that LPA induces ROS generation through the PI3K/Akt/NADPH oxidase signaling axis, thereby regulating cancer cell migration.