References
- Timmer-Bosscha, H., Mulder, N.H. and de Vries, E.G. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Br J Cancer 66: 227-238, 1992 https://doi.org/10.1038/bjc.1992.249
- Goldstein, R.S. and Mayor, G.H. Minireview. The nephrotoxicity of cisplatin. Life Sci. 32: 685-690, 1983 https://doi.org/10.1016/0024-3205(83)90299-0
- Safirstein, R., Winston, J., Goldstein, M., Moel, D., Dikman, S. and Guttenplan, J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8: 356-367, 1986 https://doi.org/10.1016/S0272-6386(86)80111-1
- Lieberthal, W., Triaca, V. and Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am. J. Physiol. 270: F700-F708, 1996
- Baliga, R., Zhang, Z., Baliga, M., Ueda, N. and Shah, S.V. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 53: 394-401, 1998 https://doi.org/10.1046/j.1523-1755.1998.00767.x
- Kaushal, G.P., Kaushal, V., Hong, X. and Shah, S.V. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int. 60: 1726-1736, 2001 https://doi.org/10.1046/j.1523-1755.2001.00026.x
- Liu, H. and Baliga, R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 63: 1687-1696, 2003 https://doi.org/10.1046/j.1523-1755.2003.00908.x
- Park, M.S., De Leon, M. and Devarajan, P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J. Am. Soc. Nephrol. 13: 858-865, 2002
- Tsuruya, K., Ninomiya, T., Tokumoto, M., Hirakawa, M., Masutani, K. and Taniguchi, M. et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 63: 72-82, 2003 https://doi.org/10.1046/j.1523-1755.2003.00709.x
- Sheikh-Hamad, D., Cacini, W., Buckley, A.R., Isaac, J., Truong, L.D. and Tsao, C.C. et al. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch. Toxicol. 78: 147-155, 2004 https://doi.org/10.1007/s00204-003-0521-4
- Cummings, B.S. and Schnellmann, R.G. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J. Pharmacol. Exp. Ther. 302: 8-17, 2002 https://doi.org/10.1124/jpet.302.1.8
- Jiang, M., Yi, X., Hsu, S., Wang, C.Y. and Dong, Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am. J. Physiol. Renal. Physiol. 287: F1140-F1147, 2004 https://doi.org/10.1152/ajprenal.00262.2004
- Baliga, R., Ueda, N., Walker, P.D. and Shah, S.V. Oxidant mechanisms in toxic acute renal failure. Drug Metab. Rev. 31: 971-997, 1999 https://doi.org/10.1081/DMR-100101947
- Nath, K.A. and Norby, S.M. Reactive oxygen species and acute renal failure. Am. J. Med. 109: 665-678, 2000 https://doi.org/10.1016/S0002-9343(00)00612-4
- Martindale, J.L. and Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192: 1-15, 2002 https://doi.org/10.1002/jcp.10119
- Taguchi, T., Nazneen, A., Abid, M.R. and Razzaque, M.S. Cisplatin-associated nephrotoxicity and pathological events. Contrib. Nephrol. 148: 107-121, 2005
- Baek, S.M., Kwon, C.H., Kim, J.H., Woo, J.S., Jung, J.S. and Kim, Y.K. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J. Lab. Clin. Med. 142: 178-186, 2003 https://doi.org/10.1016/S0022-2143(03)00111-2
- Matsushima, H., Yonemura, K., Ohishi, K. and Hishida, A. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J. Lab. Clin. Med. 131: 518-526, 1998 https://doi.org/10.1016/S0022-2143(98)90060-9
- Sueishi, K., Mishima, K., Makino, K., Itoh, Y., Tsuruya, K. and Hirakata, H. et al. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur. J. Pharmacol. 451: 203-208, 2002 https://doi.org/10.1016/S0014-2999(02)02251-3
- Tsuruya, K., Tokumoto, M., Ninomiya, T., Hirakawa, M., Masutani, K. and Taniguchi, M. et al. Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am. J. Physiol. Renal. Physiol. 285: F208-F218, 2003 https://doi.org/10.1152/ajprenal.00311.2002
- Yu, H.H., Seo, S.J., Kim, Y.H., Park, R.K., So, H.S., Jeon, B.H., Shin, M.K., Jung, S.Y., Kim, K.Y. and You, Y.O. Protective effect of rehmannia radix preparata extract on the cisplatin-induced cytotoxicity of HEI-OC1 cells via scavenging of free radicals. 19(5):1349-1355, 2005
- Yu, H.H., Seo, S.J., Moon, H.D., Park, R.K., So, H.S., Jeon, B.H., Jung, S.Y. and You, Y.O. Protective effect of pueraria radix extract on the cisplatin-induced cytotoxicity of HEI-OC1 cells via scavenging of free radicals. Kor. J. Orien. Physiol. Pathol. 21: 462-467, 2007
- Laptenko, O. and Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13: 951-961, 2006 https://doi.org/10.1038/sj.cdd.4401916
- Xu, Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10: 400-403, 2003 https://doi.org/10.1038/sj.cdd.4401182
- Fei, P. and El-Deiry, W.S. P53 and radiation responses. Oncogene 22: 5774-5783, 2003 https://doi.org/10.1038/sj.onc.1206677
- Alarcon-Vargas, D. and Ronai, Z. p53-Mdm2-the affair that never ends. Carcinogenesis 23: 541-547, 2002 https://doi.org/10.1093/carcin/23.4.541
- Jiang, M., Wei, Q., Pabla, N., Dong, G., Wang, C.Y., Yang, T., Smith, S.B. and Dong, Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73: 1499-1510, 2007 https://doi.org/10.1016/j.bcp.2007.01.010
- Bragado, P., Armesilla, A., Silva, A. and Porras, A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 12: 1733-1742, 2007 https://doi.org/10.1007/s10495-007-0082-8
- Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E. and Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11: 1306-1313, 2005 https://doi.org/10.1038/nm1320
- 김창민, 신민교, 안덕균, 이경순. 중약대사전. 서울, 정담, pp 33-40, 1998
- 박종옥, 김경순, 지영애, 류병호. 갈근에서 분리한 Daidzin 및 Puerarin의 사람 Low Density Lipoprotein 대한 항산화 효과. 한국식품영양과학회지 26: 25-31, 1997
- Lai, H.H. and Yen, G.C. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci. Biotechnol. Biochem. 66: 22-28, 2002 https://doi.org/10.1271/bbb.66.22
- Toda, S. and Shirataki, Y. Comparison of antioxidative and chelating effects of daidzein and daidzin on protein oxidative modification by copper in vitro. Biol. Trace Elem. Res. 79: 83-89, 2001 https://doi.org/10.1385/BTER:79:1:83
- Yao, S.C., Wang, L.L. and Yeung, C.S. Pharmacology and applications of chinese materia medica. World Scientific, Hongkong, pp 461-467, 1981
- Tang, W. and Eisenbrand, G. Chinese drugs of plant origin: Chemistry, pharmacolgy, and use in traditional modern medicine. Springer-Verlag, Berlin, pp 849-854, 1992
- Van Rensburg, S.J., Daniels, W.M., van Zyl, J.M. and Taljaard, J.J. A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metabolic Brain Disease 5: 257-265, 2000
- Yoshida, Y. and Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol.(Tokyo) 49: 277-280, 2003 https://doi.org/10.3177/jnsv.49.277
- Raju, B.L, Lin, S.J., Hou, W.C., Lai, Z.Y., Liu, P.C. and Hsu, F.L. Antioxidant iridoid glucosides from Wendlandia formosana. Nat. Prod. Res. 8: 357-364, 2004
- Sridhar, C., Subbaraju, G.V,, Venkateswarlu. Y. and Venugopal, R.T. New acylated iridoid glucosides from Vitex altissima. J. Nat. Prod. 67: 2012-2016, 2004 https://doi.org/10.1021/np040117r