Preventive Effect of Puerariae Radix and Rehmanniae Radix Preparata on Cisplatin-induced Rat Mesangial Cell Apoptosis

갈근(葛根)과 숙지황(熟地黃) 추출물의 cisplatin에 의한 rat mesangial cell의 apoptosis에 대한 보호효과

  • Ju, Sung-Min (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Park, Jin-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Jeon, Byung-Jae (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Yang, Hyun-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Hong, Jae-Eui (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Kim, In-Gyu (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Kim, Won-Sin (Division of Natural Science, College of Natural Sciences, Wonkwang University) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang University)
  • 주성민 (원광대학교 한의과대학 병리학교실) ;
  • 박진모 (원광대학교 한의과대학 병리학교실) ;
  • 전병제 (원광대학교 한의과대학 병리학교실) ;
  • 양현모 (원광대학교 한의과대학 병리학교실) ;
  • 홍재의 (원광대학교 한의과대학 폐계내과학교실) ;
  • 김인규 (원광대학교 한의과대학 병리학교실) ;
  • 김원신 (원광대학교 자연과학대학 생명과학부) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실)
  • Published : 2008.10.25

Abstract

One of the major side effects of cisplatin is nephrotoxicity, leading to acute renal failure. Recent study has suggested a role of hydroxyl radicals and p53 in renal cell injury by cisplatin. This study determined the possible involvement of oxidative stress in p53 activation. In rat mesangial cells, cisplatin treatment induced apoptosis and p53 activation. Pifithrin-$\alpha$, a pharmacological inhibitor of p53, suppressed cisplatin-induced apoptosis. Cisplatin also induced reactive oxidative species (ROS) generation. Of interest, cisplatin-induced apoptosis was prevented by N-acetyl-cysteine (NAC), a general antioxidant. NAC diminished p53 activation during cisplatin treatment. Puerariae Radix and Rehmanniae Radix Preparata with antioxidative activity were reduced the cisplatin-induced ROS generation, caspase-3 activity and p53 activation. In conclusion, ROS may contribute to p53 activation to initiate cisplatin-induced apoptosis in rat mesangial cells. In result, antioxidative effect of Puerariae Radix and Rehmanniae Radix Preparata prevented cisplatin-induced apoptosis through inhibition of p53 activation.

Keywords

References

  1. Timmer-Bosscha, H., Mulder, N.H. and de Vries, E.G. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Br J Cancer 66: 227-238, 1992 https://doi.org/10.1038/bjc.1992.249
  2. Goldstein, R.S. and Mayor, G.H. Minireview. The nephrotoxicity of cisplatin. Life Sci. 32: 685-690, 1983 https://doi.org/10.1016/0024-3205(83)90299-0
  3. Safirstein, R., Winston, J., Goldstein, M., Moel, D., Dikman, S. and Guttenplan, J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8: 356-367, 1986 https://doi.org/10.1016/S0272-6386(86)80111-1
  4. Lieberthal, W., Triaca, V. and Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am. J. Physiol. 270: F700-F708, 1996
  5. Baliga, R., Zhang, Z., Baliga, M., Ueda, N. and Shah, S.V. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 53: 394-401, 1998 https://doi.org/10.1046/j.1523-1755.1998.00767.x
  6. Kaushal, G.P., Kaushal, V., Hong, X. and Shah, S.V. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int. 60: 1726-1736, 2001 https://doi.org/10.1046/j.1523-1755.2001.00026.x
  7. Liu, H. and Baliga, R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 63: 1687-1696, 2003 https://doi.org/10.1046/j.1523-1755.2003.00908.x
  8. Park, M.S., De Leon, M. and Devarajan, P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J. Am. Soc. Nephrol. 13: 858-865, 2002
  9. Tsuruya, K., Ninomiya, T., Tokumoto, M., Hirakawa, M., Masutani, K. and Taniguchi, M. et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 63: 72-82, 2003 https://doi.org/10.1046/j.1523-1755.2003.00709.x
  10. Sheikh-Hamad, D., Cacini, W., Buckley, A.R., Isaac, J., Truong, L.D. and Tsao, C.C. et al. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch. Toxicol. 78: 147-155, 2004 https://doi.org/10.1007/s00204-003-0521-4
  11. Cummings, B.S. and Schnellmann, R.G. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J. Pharmacol. Exp. Ther. 302: 8-17, 2002 https://doi.org/10.1124/jpet.302.1.8
  12. Jiang, M., Yi, X., Hsu, S., Wang, C.Y. and Dong, Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am. J. Physiol. Renal. Physiol. 287: F1140-F1147, 2004 https://doi.org/10.1152/ajprenal.00262.2004
  13. Baliga, R., Ueda, N., Walker, P.D. and Shah, S.V. Oxidant mechanisms in toxic acute renal failure. Drug Metab. Rev. 31: 971-997, 1999 https://doi.org/10.1081/DMR-100101947
  14. Nath, K.A. and Norby, S.M. Reactive oxygen species and acute renal failure. Am. J. Med. 109: 665-678, 2000 https://doi.org/10.1016/S0002-9343(00)00612-4
  15. Martindale, J.L. and Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192: 1-15, 2002 https://doi.org/10.1002/jcp.10119
  16. Taguchi, T., Nazneen, A., Abid, M.R. and Razzaque, M.S. Cisplatin-associated nephrotoxicity and pathological events. Contrib. Nephrol. 148: 107-121, 2005
  17. Baek, S.M., Kwon, C.H., Kim, J.H., Woo, J.S., Jung, J.S. and Kim, Y.K. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J. Lab. Clin. Med. 142: 178-186, 2003 https://doi.org/10.1016/S0022-2143(03)00111-2
  18. Matsushima, H., Yonemura, K., Ohishi, K. and Hishida, A. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J. Lab. Clin. Med. 131: 518-526, 1998 https://doi.org/10.1016/S0022-2143(98)90060-9
  19. Sueishi, K., Mishima, K., Makino, K., Itoh, Y., Tsuruya, K. and Hirakata, H. et al. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur. J. Pharmacol. 451: 203-208, 2002 https://doi.org/10.1016/S0014-2999(02)02251-3
  20. Tsuruya, K., Tokumoto, M., Ninomiya, T., Hirakawa, M., Masutani, K. and Taniguchi, M. et al. Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am. J. Physiol. Renal. Physiol. 285: F208-F218, 2003 https://doi.org/10.1152/ajprenal.00311.2002
  21. Yu, H.H., Seo, S.J., Kim, Y.H., Park, R.K., So, H.S., Jeon, B.H., Shin, M.K., Jung, S.Y., Kim, K.Y. and You, Y.O. Protective effect of rehmannia radix preparata extract on the cisplatin-induced cytotoxicity of HEI-OC1 cells via scavenging of free radicals. 19(5):1349-1355, 2005
  22. Yu, H.H., Seo, S.J., Moon, H.D., Park, R.K., So, H.S., Jeon, B.H., Jung, S.Y. and You, Y.O. Protective effect of pueraria radix extract on the cisplatin-induced cytotoxicity of HEI-OC1 cells via scavenging of free radicals. Kor. J. Orien. Physiol. Pathol. 21: 462-467, 2007
  23. Laptenko, O. and Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13: 951-961, 2006 https://doi.org/10.1038/sj.cdd.4401916
  24. Xu, Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10: 400-403, 2003 https://doi.org/10.1038/sj.cdd.4401182
  25. Fei, P. and El-Deiry, W.S. P53 and radiation responses. Oncogene 22: 5774-5783, 2003 https://doi.org/10.1038/sj.onc.1206677
  26. Alarcon-Vargas, D. and Ronai, Z. p53-Mdm2-the affair that never ends. Carcinogenesis 23: 541-547, 2002 https://doi.org/10.1093/carcin/23.4.541
  27. Jiang, M., Wei, Q., Pabla, N., Dong, G., Wang, C.Y., Yang, T., Smith, S.B. and Dong, Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73: 1499-1510, 2007 https://doi.org/10.1016/j.bcp.2007.01.010
  28. Bragado, P., Armesilla, A., Silva, A. and Porras, A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 12: 1733-1742, 2007 https://doi.org/10.1007/s10495-007-0082-8
  29. Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E. and Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11: 1306-1313, 2005 https://doi.org/10.1038/nm1320
  30. 김창민, 신민교, 안덕균, 이경순. 중약대사전. 서울, 정담, pp 33-40, 1998
  31. 박종옥, 김경순, 지영애, 류병호. 갈근에서 분리한 Daidzin 및 Puerarin의 사람 Low Density Lipoprotein 대한 항산화 효과. 한국식품영양과학회지 26: 25-31, 1997
  32. Lai, H.H. and Yen, G.C. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci. Biotechnol. Biochem. 66: 22-28, 2002 https://doi.org/10.1271/bbb.66.22
  33. Toda, S. and Shirataki, Y. Comparison of antioxidative and chelating effects of daidzein and daidzin on protein oxidative modification by copper in vitro. Biol. Trace Elem. Res. 79: 83-89, 2001 https://doi.org/10.1385/BTER:79:1:83
  34. Yao, S.C., Wang, L.L. and Yeung, C.S. Pharmacology and applications of chinese materia medica. World Scientific, Hongkong, pp 461-467, 1981
  35. Tang, W. and Eisenbrand, G. Chinese drugs of plant origin: Chemistry, pharmacolgy, and use in traditional modern medicine. Springer-Verlag, Berlin, pp 849-854, 1992
  36. Van Rensburg, S.J., Daniels, W.M., van Zyl, J.M. and Taljaard, J.J. A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metabolic Brain Disease 5: 257-265, 2000
  37. Yoshida, Y. and Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol.(Tokyo) 49: 277-280, 2003 https://doi.org/10.3177/jnsv.49.277
  38. Raju, B.L, Lin, S.J., Hou, W.C., Lai, Z.Y., Liu, P.C. and Hsu, F.L. Antioxidant iridoid glucosides from Wendlandia formosana. Nat. Prod. Res. 8: 357-364, 2004
  39. Sridhar, C., Subbaraju, G.V,, Venkateswarlu. Y. and Venugopal, R.T. New acylated iridoid glucosides from Vitex altissima. J. Nat. Prod. 67: 2012-2016, 2004 https://doi.org/10.1021/np040117r