• 제목/요약/키워드: ROOT NODULES

Search Result 91, Processing Time 0.024 seconds

Nitrogen fixation and componental changes in root nodules and plant organs during reproductive stages in soybeans. II. Nitrogenase activity and concentrations of total nitrogen, amino acid and allantoin-N in root nodules and plant organs (콩에 있어서 등숙기간중 질소도정작용과 근류 및 식물체 각 기관 체내성분 농도와의 관계. II. 식물체 각기관 총질소 Amino 산 및 Allantoin농도와 질소 고정능과의 관계)

  • Kim Seok Dong;Hong Eun Hi;Junji Ishizuka
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1986.06a
    • /
    • pp.64-65
    • /
    • 1986
  • PDF

Isolation of Symbiotic Frankia EuIK1 Strain from Root Nodule of Elaeagnus umbellata (보리수나무 뿌리혹으로부터 Frankia EuIK1 공생균주의 분리)

  • 김성천
    • Journal of Plant Biology
    • /
    • v.36 no.2
    • /
    • pp.177-182
    • /
    • 1993
  • The root nodules of Elaeagnus umbellata were coralloid-shape due to repeated dichotomous branching of nodule meristem. The filamentous endophyte with vesicle cluster ranging from 30 ${\mu}{\textrm}{m}$ to 60 ${\mu}{\textrm}{m}$ in diameter was present only in the cortical cells. The isolated endophytes in vitro culture showed typical Frankia morphology, consisting of highly branched hyphae ranging from 0.8 ${\mu}{\textrm}{m}$ to 1.0 ${\mu}{\textrm}{m}$ in diameter, terminal and intrahyphal sporangia varing in shape and size up to 60 ${\mu}{\textrm}{m}$ in length and laminated vesicles. Its infectivity and effectivity were confirmed by induction of nitrogen-fixing root nodules on the inoculated seedlings of two Elaeagnus species. Consequently, the isolate was confirmed as a true symbiont of Elaeagnus umbellata root nodule and named Frankia EuIK1.

  • PDF

Expression of a Functional Type-I Chalcone Isomerase Gene Is Localized to the Infected Cells of Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Bae, Ju Hee;Lim, Jung Dae;Yu, Chang Yeon;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.405-409
    • /
    • 2007
  • A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant, which is defective in naringenin production and has yellow seeds due to proanthocyanidin deficiency. Ectopic overexpression of EuNOD-CHI resulted in recovery of normal seed coat color. Naringenin produced by CHI from naringenin chalcone was detected in the transgenic lines like in the wild-type, whereas it was absent from the tt5 mutant. We conclude that EuNOD-CHI encodes a functional type-I CHI. In situ hybridization revealed that EuNOD-CHI expression is localized to the infected cells of the fixation zone in root nodules.

Overexpression of GmAKR1, a Stress-Induced Aldo/keto Reductase from Soybean, Retards Nodule Development

  • Hur, Yoon-Sun;Shin, Ki-Hye;Kim, Sunghan;Nam, Kyoung Hee;Lee, Myeong-Sok;Chun, Jong-Yoon;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.217-223
    • /
    • 2009
  • Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.

Studies on Varietal Differences in Growth, Nodulation and Nitrogen Fixation in Soybeans Glycine max (L.) Merril II. Changes in Sugar Concentration of Root and Nodule During Reproductive Stage (콩의 생육, 근류형성, 질소고정에 있어서 품종간 차이 II. 등숙기간중 근 및 근류 당함량의 경시적 변화)

  • 김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.447-454
    • /
    • 1987
  • Five soybean varieties of two early maturing; Karikei 73 and SS79168, and three late maturing; Tohoku 76, Baegunkong and Jangbaegkong, were used and evaluated in the study, Of the varieties examined, Karikei 73 was characterized by the delayed leaf senescence, To investigate the periodical trends of sugars in plant organs and their roles to the nitrogen fixing activity of root nodules, the concentrations of reducing and non-reducing sugar in root and nodules during the grain filling period were measured. The concentration of non-reducing sugar in roots was not changed up to the stage of R6 for all of the varieties but it decreased rapidly thereafter for the varieties except Karikei 73. No such rapid decrease in the concentration of non-reducing sugar in the roots was observed for Karikei 73 having the characteristics of delayed leaf senescence. The concentration of reducing sugar in the root nodules was not greatly changed for all of the varieties up to the stage of R6 regardless of the earliness of varieties but increased temporarily at R6.5 when there was a rapid decrease in ARA. The phenomenon explained the fact that nitrogen fixing activities were controlled not only by supplying sugars as the source of energy for nitrogen fixation, but also by the need for fixed nitrogen of the plant. The concentration of non-reducing sugar in root nodules also increased up to the stage of R6-R6.5 but decreased at R7, which could apply the same explanation as in the concentration of reducing sugar of the root nodules.

  • PDF

Symbiotic Effectiveness of Bradyrhizobium japonicum USDA 110 in Supernodulating Soybean Mutant SS2-2

  • Lestari Puji;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.125-130
    • /
    • 2005
  • In the absence of exogeneous nitrogen supply, evaluation of a symbiosis effectiveness of Bradyrhizobium japonicum USDA 110 in a supernodulating soybean mutant, SS2-2, its wild type, Sinpaldalkong 2, and control genotype, Jangyeobkong, was conducted in this study. Nodules in SS2-2 were initially white and similar to its wild type, Sinpaldalkong 2. At the late stage, the wild type nodules became dark pinkish by maturation, by contrast, mature nodules in SS2-2 remained light green to pinkish, indicating a lack of leghemoglobin. Tap root length was short in nodulated symbiotic SS2-2 than that of its wild type and the control genotype. Nodulated root length and nodule density on root length were significantly increased by B. japonicum inoculation, but no significant increase was observed on root length and percentage of nodulation to total root length. Regardless of Bradyrhizobium inoculation, SS2-2 showed higher nodule dry weight and higher acetylene reduction activity (ARA) when compared with its wild type and the control genotype. Inoculation of B. japonicum leaded the increase of ARA in 47 days after planting (DAP), in part because of nodule development. Supernodulating mutant, SS2-2, less responded to B. japonicum induction in terms of nitrogen fixation and nodulation characteristics than its wild type. Thus, interaction of supernodulating soybean mutant with Bradyrhizobium had less symbiotically associated response than normal nodulating soybean.

Isolation of Symbiotic Frankia Strain from the Root Nodule of Alnus hirsuta (물오리나무의 뿌리혹으로부터 Frankia 공생균주의 분이)

  • 권석윤
    • Journal of Plant Biology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • An endophyte was isolated from the root nodule of alnus hirsuta. The isolated endophyte was identified as a Frankia sp. through morphological characteristics. Their infectivity and effectivity were confirmed by nitrogen-fixing root nodules induced on inoculated Alnus seedlings. Reisolated endophyte from the induced nodule showed identical morphological characteristics as the first isolate, showing the nodule was induced by the first isolate. Consequently, the first isolate was confirmed as a true symbiont of Almus hirsuta root nodule. The isolate was designated as a Frankia SNU 014201 strain.

  • PDF

Effects of Two Different Rhizobium Strains on Nodulation and Growth of Lucerne (Medicago sativa L.) in an Acid Soil (균계를 달리하는 근류균이 산성토양 조건에서 알팔파의 근류형성과 생장에 미치는 효과)

  • Choe, Z.R.;Kim, J.K.;Bin, Y.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.38-48
    • /
    • 1980
  • To evaluate Rhizobium meliloti BALSAC, a strain selected from Canada as an acid tolerant one, and ordinary lucerne inoculant in acid condition, lucerne (Medicago sativa L. cv. Wairau) was inoculated and/or pelleted in the laboratory, and grown for two months in an acid soil (Lismore silt loam, pH 5.4) with three levels of lime in the, glasshouse. The results of controlled (noninoculated), nitrogen fertilized, laboratorial and commercial inoculated seeds were compared to give the following conclusions: 1. There was no significant difference in the top and root dry matter yields between two Rhizobium strains. However, Balsac inoculant showed higher single nodule dry matter weight and relatively higher number of larger nodules than the ordinary inoculant. 2. Lime application increased dry matter yields of plants and nodules, and the number of nodules per pot and the increase of nodules on the lateral roots in both inoculants. Lime application also caused an evenly distribution of nodules on the root by showing an increase of nodules mainly on the lateral roots. 3. Fertilizer nitrogen without inoculant slightly increased the nodulation percentage, the nodule dry matter weight per nodule and the relative proportion of larger nodules. 4. Commercially inoculated and pelleted seed showed less consistent results. 5. Relatively larger variations in measuring nodule characteristics was discussed and concluded that extreme cares should be given to reduce the variation.

  • PDF

Effect of Temperature on the Nitrogen Fixation Activity of Root Nodules of Melilotus suaveolens (전동싸리 근류의 질소고정에 대한 온도의 영향)

  • Park, Tae-Gyu;Jong Suk Song;In Seon Kim;Wwang Soo Nho;Bong Bo Seo;Hwa Sook Chung;Jae Hong Pak;Seung Dal Song
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.323-332
    • /
    • 1995
  • Effects of wintering and temperature on nitrogen fixation activity of nodules of Melilotus suaveolens Ledeb. grown in the field and growth chamber conditions were investigated. The biennial plants transfered to the growth chamber from winter field recovered the activity in 3 weeks of incubation and attained the maximum rate of $153{\mu}mol\;C_2H_4{\cdot}g$ fr wt $nodule^{-1}{\cdot}h^{-1}$ in 5 weeks. When root nodules which adapted to different temperatures, were pretreated with 10, 20 and $30^{\circ}C$ for 1 hour, and then transfered to $30^{\circ}C$, nitrogen fixation activity was promoted in the nodules exposed to lower field temperature ($12^{\circ}C$) with 1$0^{\circ}C$ pretreatment. M. suaveolens maintained nitrogen fixation activity in the wide range of temperatures, and was more tolerant to lower temperature than those of other woody leguminous plants, Diurnal changes of nodule activity showed increase with sunrise and decrease with sunset during spring and autumn, but the activity was inhibited during July and August because of high temperature with stron irradiation. Nitrogen fixation activity of annual plant appeared in mid-April, and showed two peaks (104 and 43 mol $C_2H_4{\cdot}g$ fr wt $nodule^{-1}{\cdot}h^{-1}$) in July and September, and then disappeared after October. Nitrogen fixation activity of biennial plant reappeared in mid-March after wintering and attained two peaks (102 and 82 ${\mu}mol\;C_2H_4{\cdot}g$ fr wt $nodule^{-1}{\cdot}h^{-1}$) in April and June of flowering period, and then disappeared after July due to plant withering by severe drought.

  • PDF

Changes in Nodule-Specific Proteins during Nodule Development of Canavalia lineata (해녀콩(Canavalia lineata)의 뿌리혹 발달 단계에 따른 뿌리혹 특이 단백질의 변화 양상)

  • 최성화
    • Journal of Plant Biology
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 1991
  • Total soluble proteins from three developmental stages of induced root nodules of Canavalia lineata were compared with those of non-nodulated roots by SDS-PAGE and two dimensional (2-D) gel electrophoresis. Thirteen nodule-specific protein (nodulin) bands were identified by the former and 30 nodule specific protein spots were detected by the latter method respectively. Some of the nodulins were detected differentially depending on the nodule's developmental stages. For example, only three leghemoglobin (Lb)-like protein spots appeared at stage I (d<2 mm), but two additional Lb-like protein spots appeared at stage II (d <4-5 mm). pI value and molecular weight of nomomers of Lb-like protein were narrower and greater than those of soybean, ranging from 4.4 to 5.0 and 15.7 kd respectively. Northern blot hybridization of total RNAs from roots and root nodules using soybean Lb cDNA as a probe made it clear that Lb gene was expressed tissue-specifically only in the root nodules.odules.

  • PDF