DOI QR코드

DOI QR Code

Overexpression of GmAKR1, a Stress-Induced Aldo/keto Reductase from Soybean, Retards Nodule Development

  • Hur, Yoon-Sun (Department of Biological Science, Sookmyung Women's University) ;
  • Shin, Ki-Hye (Department of Biological Science, Sookmyung Women's University) ;
  • Kim, Sunghan (Department of Biological Science, Sookmyung Women's University) ;
  • Nam, Kyoung Hee (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Myeong-Sok (Department of Biological Science, Sookmyung Women's University) ;
  • Chun, Jong-Yoon (Seegene Inc.) ;
  • Cheon, Choong-Ill (Department of Biological Science, Sookmyung Women's University)
  • Received : 2008.11.03
  • Accepted : 2008.12.10
  • Published : 2009.02.28

Abstract

Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.

Keywords

Acknowledgement

Supported by : Sookmyung Women's University

References

  1. Acevedo-Hernandez, G.J., Leon, P., and Herrera-Estrella, L.R. (2005). Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J. 43, 506-519 https://doi.org/10.1111/j.1365-313X.2005.02468.x
  2. Boot, K., Van Der Zaal, B.J., Velterop, J., Quint, A., Mennes, A.M., Hooykaas, P., and Libbenga, K.R. (1993). Further characterization of expression of auxin-induced genes in Tobacco (Nicotiana tabacum) cell-suspension cultures. Plant Physiol. 102, 513-520 https://doi.org/10.1104/pp.102.2.513
  3. Chakravarthy, S., Tuori, R.P., D'Ascenzo, M.D., Fobert, P.R., Despres, C., and Martin, G.B. (2003). The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15, 3033-3050 https://doi.org/10.1105/tpc.017574
  4. Charon, C., Sousa, C., Crespi, M., and Kondorosi, A. (1999). Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11, 1953-1966 https://doi.org/10.1105/tpc.11.10.1953
  5. Chen, P.W., Chiang, C.M., Tseng, T.H., and Yu, S.M. (2006). Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell 18, 2326-2340 https://doi.org/10.1105/tpc.105.038844
  6. de Billy, F., Grosjean, C., May, S., Bennett, M., and Cullimore, J.V. (2001). Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol. Plant Microbe Interact. 14, 267-277 https://doi.org/10.1094/MPMI.2001.14.3.267
  7. Fehlberg, V., Vieweg, M.F., Dohmann, E.M., Hohnjec, N., Puhler, A., Perlick, A.M., and Kuster, H. (2005). The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J. Exp. Bot. 56, 799-806 https://doi.org/10.1093/jxb/eri074
  8. Foucher, F., and Kondorosi, E. (2000). Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol. Biol. 43, 773-786 https://doi.org/10.1023/A:1006405029600
  9. Guilfoyle, T., Hagen, G., Ulmasov, T., and Murfett, J. (1998). How does auxin turn on genes? Plant Physiol. 118, 341-347 https://doi.org/10.1104/pp.118.2.341
  10. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids ResK 27, 297-300 https://doi.org/10.1093/nar/27.1.297
  11. Hyndman, D., Bauman, D.R., Heredia, V.V., and Penning, T.M. (2003). The aldo-keto reductase superfamily homepage. Chem. Biol. Interact. 143-144, 621-631 https://doi.org/10.1016/S0009-2797(02)00193-X
  12. Jez, J.M., Bennett, M.J., Schlegel, B.P., Lewis, M., and Penning, T.M. (1997). Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J. 326, 625-636 https://doi.org/10.1042/bj3260625
  13. Jin, Y., and Penning, T.M. (2007). Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. Toxicol. 47, 263-292 https://doi.org/10.1146/annurev.pharmtox.47.120505.105337
  14. Johnson, C., Glover, G., and Arias, J. (2001). Regulation of DNA binding and trans-activation by a xenobiotic stress-activated plant transcription factor. J. Biol. Chem. 276, 172-178 https://doi.org/10.1074/jbc.M005143200
  15. Katagiri, F., Lam, E., and Chua, N.H. (1989). Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340, 727-730 https://doi.org/10.1038/340727a0
  16. Kim, Y.J., Kwak, C.I., Gu, Y.Y., Hwang, I.T., and Chun, J.Y. (2004). Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 36, 424-426, 428, 430 passim
  17. Kim, Y.K., Son, O., Kim, M.R., Nam, K.H., Kim, G.T., Lee, M.S., Choi, S.Y., and Cheon, C.I. (2007a). ATHB23, an Arabidopsis class I homeodomain-leucine zipper gene, is expressed in the adaxial region of young leaves. Plant Cell Rep. 26, 1179-1185 https://doi.org/10.1007/s00299-007-0340-9
  18. Kim, H.B., Lee, H., Oh, C.J., Lee, N.H., and An, C.S. (2007b). Expression of EuNOD-ARP1 encoding auxin-repressed protein homolog is upregulated by auxin and localized to the fixation zone in root nodules of Elaeagnus umbellata. Mol. Cells 23, 115-121
  19. Klinedinst, S., Pascuzzi, P., Redman, J., Desai, M., and Arias, J. (2000). A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol. Biol. 42, 679-688 https://doi.org/10.1023/A:1006332708388
  20. Lee, M.Y., Shin, K.H., Kim, Y.K., Suh, J.Y., Gu, Y.Y., Kim, M.R., Hur, Y.S., Son, O., Kim, J.S., Song, E., et al. (2005). Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol. 139, 1881-1889 https://doi.org/10.1104/pp.105.067884
  21. Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325-327 https://doi.org/10.1093/nar/30.1.325
  22. Li, Y., Liu, Z.B., Shi, X., Hagen, G., and Guilfoyle, T.J. (1994). An auxin-inducible element in soybean SAUR promoters. Plant Physiol. 106, 37-43 https://doi.org/10.1104/pp.106.1.37
  23. Martin, H.J., Breyer-Pfaff, U., Wsol, V., Venz, S., Block, S., and Maser, E. (2006). Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics. Drug Metab. Dispos. 34, 464-470
  24. Mathesius, U., Schlaman, H.R., Spaink, H.P., Of Sautter, C., Rolfe, B.G., and Djordjevic, M.A. (1998). Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14, 23-34 https://doi.org/10.1046/j.1365-313X.1998.00090.x
  25. Morita, T., Huruta, T., Ashiuchi, M., and Yagi, T. (2002). Characterization of recombinant YakC of Schizosaccharomyces pombe showing YakC defines a new family of aldo-keto reductases. J. Biochem. 132, 635-641 https://doi.org/10.1093/oxfordjournals.jbchem.a003267
  26. Niggeweg, R., Thurow, C., Kegler, C., and Gatz, C. (2000). Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem. 275, 19897-19905 https://doi.org/10.1074/jbc.M909267199
  27. Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgen, R. (2003). Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33, 633-650 https://doi.org/10.1046/j.1365-313X.2003.01657.x
  28. Oh, H.S., Son, O., Chun, J.Y., Stacey, G., Lee, M.S., Min, K.H., Song, E.S., and Cheon, C.I. (2001). The Bradyrhizobium japonicum gene exhibits a unique developmental expression pattern in cowpea nodules. Mol. Plant Microbe Interact. 14, 1286-1292 https://doi.org/10.1094/MPMI.2001.14.11.1286
  29. Oldroyd, G.E., and Downie, J.A. (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519-546 https://doi.org/10.1146/annurev.arplant.59.032607.092839
  30. Peer, W.A., and Murphy, A.S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12, 556-563 https://doi.org/10.1016/j.tplants.2007.10.003
  31. Rombauts, S., Dehais, P., Van Montagu, M., and Rouze, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 27, 295-296 https://doi.org/10.1093/nar/27.1.295
  32. Sakai, T., Takahashi, Y., and Nagata, T. (1996). Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol. 37, 906-991 https://doi.org/10.1093/oxfordjournals.pcp.a029038
  33. Sieburth, L.E., Muday, G.K., King, E.J., Benton, G., Kim, S., Metcalf, K.E., Meyers, L., Seamen, E., and Van Norman, J.M. (2006). SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 18, 1396-1411 https://doi.org/10.1105/tpc.105.039008
  34. Stacey, G., Libault, M., Brechenmacher, L., Wan, J., and May, G.D. (2006). Genetics and functional genomics of legume nodulation. Curr. Opin. Plant Biol. 9, 110-121 https://doi.org/10.1016/j.pbi.2006.01.005
  35. Subramanian, S., Stacey, G., and Yu, O. (2007). Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12, 282-285 https://doi.org/10.1016/j.tplants.2007.06.006
  36. Tiwari, S.B., Hagen, G., and Guilfoyle, T. (2003). The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15, 533-543 https://doi.org/10.1105/tpc.008417
  37. Ulmasov, T., Hagen, G., and Guilfoyle, T. (1994). The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol. Biol. 26, 1055-1064 https://doi.org/10.1007/BF00040688
  38. Ulmasov, T., Liu, Z.B., Hagen, G., and Guilfoyle, T.J. (1995). Composite structure of auxin response elements. Plant Cell 7, 1611-1623 https://doi.org/10.1105/tpc.7.10.1611
  39. Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963-1971 https://doi.org/10.1105/tpc.9.11.1963
  40. Wasson, A.P., Pellerone, F.I., and Mathesius, U. (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617-1629 https://doi.org/10.1105/tpc.105.038232
  41. Xiang, C., Miao, Z.H., and Lam, E. (1996). Coordinated activation of as-1-type elements and a tobacco glutathione p-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol. Biol. 32, 415-426 https://doi.org/10.1007/BF00019093
  42. Zhuang, X., Jiang, J., Li, J., Ma, Q., Xu, Y., Xue, Y., Xu, Z., and Chong, K. (2006). Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J. 48, 581-591 https://doi.org/10.1111/j.1365-313X.2006.02898.x

Cited by

  1. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation vol.14, pp.None, 2009, https://doi.org/10.1186/1471-2164-14-919
  2. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update vol.179, pp.None, 2009, https://doi.org/10.1016/j.jplph.2015.03.004
  3. Expression Analysis of Aldo-Keto Reductase 1 (<i>AKR1</i>) in Foxtail Millet (<i>Setaria italica</i> L.) Subjected to Abiotic Stresses vol.7, pp.3, 2016, https://doi.org/10.4236/ajps.2016.73044
  4. Comparative Transcriptome Analysis of Tree Peony Petals on Two Different Rootstocks vol.38, pp.4, 2009, https://doi.org/10.1007/s00344-019-09933-w
  5. Analysis of Aldo–Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula vol.21, pp.3, 2020, https://doi.org/10.3390/ijms21030754
  6. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in longan vol.96, pp.3, 2009, https://doi.org/10.1080/14620316.2020.1847695
  7. Experimental evolution can enhance benefits of rhizobia to novel legume hosts vol.288, pp.1951, 2009, https://doi.org/10.1098/rspb.2021.0812