Expression of a Functional Type-I Chalcone Isomerase Gene Is Localized to the Infected Cells of Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang (School of Biological Sciences, Seoul National University) ;
  • Bae, Ju Hee (School of Biological Sciences, Seoul National University) ;
  • Lim, Jung Dae (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Yu, Chang Yeon (Division of Applied Plants Science, Kangwon National University) ;
  • An, Chung Sun (School of Biological Sciences, Seoul National University)
  • Received : 2007.03.19
  • Accepted : 2007.04.09
  • Published : 2007.06.30

Abstract

A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant, which is defective in naringenin production and has yellow seeds due to proanthocyanidin deficiency. Ectopic overexpression of EuNOD-CHI resulted in recovery of normal seed coat color. Naringenin produced by CHI from naringenin chalcone was detected in the transgenic lines like in the wild-type, whereas it was absent from the tt5 mutant. We conclude that EuNOD-CHI encodes a functional type-I CHI. In situ hybridization revealed that EuNOD-CHI expression is localized to the infected cells of the fixation zone in root nodules.

Keywords

Acknowledgement

Supported by : Korean Ministry of Science and Technology

References

  1. Alltech's Chromatography Sourcebook Bulletin #460A (2006), Alltech Associates, Inc., Deerfield
  2. Benoit, L. F. and Berry, A. M. (1997) Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actionmycetes). Physiol. Plant. 99, 588-593 https://doi.org/10.1111/j.1399-3054.1997.tb05361.x
  3. Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., et al. (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524–535
  4. Chung, I. M., Kim, J. J., Lim, J. D., Yu, C. Y., Kim, S. H., et al. (2006) Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ. Exp. Bot. 56, 44-53 https://doi.org/10.1016/j.envexpbot.2005.01.001
  5. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  6. Cox, K. H. and Goldberg, R. B. (1988) Analysis of plant gene expression; in Plant Molecular Biology: a Practical Approach, Shaw, C. H. (eds.), pp. 1-35, IRL press, Oxford
  7. Goormachtig, S., Lievens, S., Herman, S., Van Montagu, M., and Holsters, M. (1999) Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legume Sesbania rostrata. Planta 209, 45-52 https://doi.org/10.1007/s004250050605
  8. Hirsch, A. M. (1992) Developmental biology of legume nodulation. New Phytol. 122, 211-237 https://doi.org/10.1111/j.1469-8137.1992.tb04227.x
  9. Hocher, V., Auguy, F., Argout, X., Laplaze, L., Franche, C., et al. (2006) Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol. 169, 681-688 https://doi.org/10.1111/j.1469-8137.2006.01644.x
  10. Jacobs, M. and Rubery, P. H. (1988) Naturally occurring auxin transport regulators. Science 241, 346-349 https://doi.org/10.1126/science.241.4863.346
  11. Jez, J. M., Bowman, M. E., Dixon, R. A., and Noel, J. P. (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat .Struct. Biol. 7, 786-791 https://doi.org/10.1038/79025
  12. Kim, H. B. and An, C. S. (2002) Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellata. Mol. Plant-Microbe Interact. 15, 209-215 https://doi.org/10.1094/MPMI.2002.15.3.209
  13. Kim, H. B., Oh, C. J., Lee, H., and An, C. S. (2003) A type-I chalcone isomerase mRNA is highly expressed in the root nodules of Elaeagnus umbellata. J. Plant Biol. 46, 263-270 https://doi.org/10.1007/BF03030373
  14. Kim, H. K., Jang, Y. H., Baek, I. S., Lee, J. H., Park, M. J., et al. (2005) Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Mol. Cells 19, 67-73
  15. Kimura, Y., Aoki, T., and Ayabe, S. (2001) Chalcone isomerase isozymes with different substrate specificities toward 6′-hydroxy and 6′-deoxychalcones in cultured cells of Glycyrrhiza echinata, a leguminous plant producing 5′-deoxyflavo-noids. Plant Cell Physiol. 42, 1169-1173 https://doi.org/10.1093/pcp/pce130
  16. Laplaze, L., Gherbi, H., Frutz, T., Pawlowski, K., Franche, C., et al. (1999) Flavan-containing cells delimit Frankia-infected compartments in Casuarinas glauca nodules. Plant Physiol. 121, 113-122 https://doi.org/10.1104/pp.121.1.113
  17. Lee, H. K., Kwon, M., Jeon, J. H., Fujioka, S., Kim, H. B., et al. (2006) An Arabidopsis short root and dwarfism mutant defines a novel locus that mediates both cell division and elongation. J. Plant Biol. 49, 61-69 https://doi.org/10.1007/BF03030789
  18. Lepiniec, L., Debeaujon, I., Routaboul, J. M., Baudry, A., Pourcel, L., et al. (2006) Genetics and biochemistry of seed flavonoids. Ann. Rev. Plant Biol. 57, 405-430 https://doi.org/10.1146/annurev.arplant.57.032905.105252
  19. McKhann, H. I. and Hirsch, A. M. (1993) In situ localization of specific mRNAs in plant tissues; in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. (eds.), pp. 179-205, CRC press, Boca Raton
  20. McKhann, H. I., Paiva, N. L., Dixon, R. A., and Hirsch, A. M. (1997) Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol. Plant-Microbe Interact. 10, 50-58 https://doi.org/10.1094/MPMI.1997.10.1.50
  21. Mulder, L., Hogg, B., Bersoult, A., and Cullimore, J. V. (2005) Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiol. Plant. 123, 207-218 https://doi.org/10.1111/j.1399-3054.2005.00448.x
  22. Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S., et al. (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 131, 941-951 https://doi.org/10.1104/pp.004820
  23. Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890 https://doi.org/10.1093/nar/15.14.5890
  24. Wasson, A. P., Pellerone, F. I., and Mathesius, U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617-1629 https://doi.org/10.1105/tpc.105.038232
  25. Woo, H. Y., Jeong, B. R., and Hawes, M. C. (2005) Flavonoids: from cell cycle regulation to biotechnology. Biotech. Lett. 27, 365-374 https://doi.org/10.1007/s10529-005-1521-7
  26. Yang, W. C., Canter Cremers, H. C. J., Hogendijk, P., Katinakis, P., Wijffelman, C. A., et al. (1992) In-situ localization of chalcone synthase mRNA in pea root nodule development. Plant J. 2, 143-151 https://doi.org/10.1111/j.1365-313X.1992.00143.x