• Title/Summary/Keyword: RNA transcript

Search Result 302, Processing Time 0.025 seconds

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.

Molecular cloning, identification, transcriptional analysis, and silencing of enolase on the life cycle of Haemaphysalis longicornis (Acari, Ixodidae) tick

  • Md. Samiul Haque;Md. Khalesur Rahman;Mohammad Saiful Islam;Myung-Jo You
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.2
    • /
    • pp.226-237
    • /
    • 2024
  • Ticks, blood-sucking ectoparasites, spread diseases to humans and animals. Haemaphysalis longicornis is a significant vector for tick-borne diseases in medical and veterinary contexts. Identifying protective antigens in H. longicornis for an anti-tick vaccine is a key tick control strategy. Enolase, a multifunctional protein, significantly converts D-2-phosphoglycerate and phosphoenolpyruvate in glycolysis and gluconeogenesis in cell cytoplasm. This study cloned a complete open reading frame (ORF) of enolase from the H. longicornis tick and characterized its transcriptional and silencing effect. We amplified the full-length cDNA of the enolase gene using rapid amplification of cDNA ends. The complete cDNA, with an ORF of 1,297 nucleotides, encoded a 432-amino acid polypeptide. Enolase of the Jeju strain H. longicornis exhibited the highest sequence similarity with H. flava (98%), followed by Dermacentor silvarum (82%). The enolase motifs identified included N-terminal and C-terminal regions, magnesium binding sites, and several phosphorylation sites. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that enolase mRNA transcripts were expressed across all developmental stages of ticks and organs such as salivary gland and midgut. RT-PCR showed higher transcript levels in syn-ganglia, suggesting that synganglion nerves influence enolase's role in tick salivary glands. We injected enolase double-stranded RNA into adult unfed female ticks, after which they were subsequently fed with normal unfed males until they spontaneously dropped off. RNA interference significantly (P<0.05) reduced feeding and reproduction, along with abnormalities in eggs (no embryos) and hatching. These findings suggest enolase is a promising target for future tick control strategies.

Deterimination of an Optimal Time Point for Analyzing Transcriptional Activity and Analysis of Transcripts of Avian Influenza Virus H9N2 in Cultured Cell (배양세포에서 Semi-quantitative RT-PCR에 의한 조류인플루엔자 H9N2의 전사활성 분석 최적 시기 결정 및 전사체 분석)

  • Na, Gi-Youn;Lee, Young-Min;Byun, Sung-June;Jeon, Ik-Soo;Park, Jong-Hyeon;Cho, In-Soo;Joo, Yi-Seok;Lee, Yun-Jung;Kwon, Jun-Hun;Koo, Yong-Bum
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.286-290
    • /
    • 2009
  • The transcription of mRNA of avian influenza virus is regulated temporally during infection. Therefore, the measurement of transcript level in host cells should be performed before viral release from host cells because errors can occur in the analysis of the transcript levels if the viruses released from the infected cells re-infect cells. In this study, the timing of viral release was determined by measuring the level of viral RNA from viruses released from H9N2-infected chicken fibroblast cell line UMNSAH/DF-1 by semi-quantitative RT-PCR. The viral genomic RNA was isolated together with mouse total RNA which was added to the collected medium as carrier to monitor the viral RNA recovery and to use its GAPDH as an internal control for normalizing reverse transcription reaction as well as PCR reaction. It was found that viral release of H9N2 in the chicken fibroblast cell line UMNSAH/DF-1 took between 16 and 20 h after infection. We measured all 8 viral mRNA levels. Of the 8 transcripts, 7 species of viral mRNAs (each encoding HA, NA, PB1, PB2, NP, M, NS, respectively) except PA mRNA showed robust amplification, indicating these mRNA can be used as targets for amplification to measure transcript levels. These results altogether suggest that the method in this study can be used for screening antiviral materials against viral RNA polymerase as a therapeutic target.

RNase P-dependent Cleavage of Polycistronic mRNAs within Their Downstream Coding Regions in Escherichia coli

  • Lee, Jung-Min;Kim, Yool;Hong, Soon-Kang;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1137-1140
    • /
    • 2008
  • M1 RNA, the catalytic subunit of Escherichia coli RNase P, is an essential ribozyme that processes the 5' leader sequence of tRNA precursors (ptRNAs). Using KS2003, an E. coli strain generating only low levels of M1 RNA, which showed growth defects, we examined whether M1 RNA is involved in polycistronic mRNA processing or degradation. Microarray analysis of total RNA from KS2003 revealed six polycistronic operon mRNAs (acpP-fabF, cysDNC, flgAMN, lepAB, phoPQ, and puuCBE) showing large differences in expression between the adjacent genes in the same mRNA transcript compared with the KS2001 wild type strain. Model substrates spanning an adjacent pair of genes for each polycistronic mRNA were tested for RNase P cleavage in vitro. Five model RNAs (cysNC, flgMN, lepAB, phoPQ, and puuBE) were cleaved by RNase P holoenzyme but not by M1 RNA alone. However, the cleavages occurred at non-ptRNA-like cleavage sites, with much less efficiency than the cleavage of ptRNA. Since cleavage products generated by RNase P from a polycistronic mRNA can have different in vivo stabilities, our results suggest that RNase P cleavage may lead to differential expression of each cistron.

Alternative Splicing Pattern Analysis from RNA-Seq data (RNA-Seq 데이터를 이용한 선택 스플라이싱 유형 분석)

  • Kong, Jin-Hwa;Lee, Jong-Keun;Lee, Un-Joo;Yoon, Jee-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.37-40
    • /
    • 2011
  • 선택 스플라이싱 (alternative splicing)은 mRNA (messenger RNA)의 전구체인 pre-mRNA가 mRNA로 전사될 때 pre-mRNA의 엑손 영역들 (exons)이 여러 가지 유형 (pattern)으로 다시 연결되는 과정을 말한다. 선택 스플라이싱에 의해 하나의 유전자로부터 서로 다른 mRNA가 만들어 지고 서로 다른 이소형의 단백질 (protein isoforms)이 생성된다. 현재까지 알려진 선택 스플라이싱의 유형은 약 7가지 종류가 있으며, 유전자의 돌연변이 및 질병과 밀접한 연관성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 차세대 시퀀싱 (Next Generation Sequencing : NGS) 기술로 생성된 RNA-Seq 데이터로부터 각 유전자 영역에 대한 선택 스플라이싱 유형을 분류/추출하는 새로운 알고리즘을 제안한다. 제안된 알고리즘에서는 RNA-Seq 데이터를 DNA 시퀀스와 mRNA 트랜스크립트 시퀀스에 동시 매핑하고, 각 엑손 영역에 정렬된 RNA-Seq 데이터의 커버리지 정보 및 엑손의 접합 (junction) 정보를 이용하여 발현된 트랜스크립트 (transcript)의 종류와 양을 측정한다. 알고리즘의 유효성을 보이기 위하여 시뮬레이션 데이터를 이용한 인간 유전자 영역에서의 선택 스플라이싱 유형 추출 실험을 수행하였으며, 검증된 선택 스플라이싱 DB와 비교, 검증하였다.

Effects of $K^+$ lon on in vitro RNA Splicing of T4 Phage Thymidylate Synthase Gene

  • Sung, Jung-Suk;Park, In-Kook
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.49-53
    • /
    • 1996
  • The effects of K$^{+}$ ion on the activity of RNA splicing of T4 phage thymidylate synthase gene have been investigated. The splicing activity was stimulated within the range of 5 to 20 mM concentration of KCI. When the concentration of KCI in the splicing reaction was brought to 100 or 200 mM a small amount of the exonl-intron product (1, 4 kb) was formed with large proportion of primary RNA transcript not undergoing splicing. This observation strongly suggests that there may exist come kinds of interferences with transesterification at the first step of splicing. Overall it can be concluded that K$^{+}$ ion exhibits very unique roles in RNA splicing of tdd gene depending on its concentration.ion.

  • PDF

Beyond X-Chromosome Inactivation: The Oncogenic Facet of XIST in Human Cancers

  • Madhi, Hamadi;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • Long-non coding RNAs (LncRNAs) constitute a wide and extremely diverse family of RNA transcripts that are greater than 200 base pairs in length and are not translated into proteins. X-inactive specific transcript (XIST) was the first long non-coding RNA to be discovered, back in 1991. Its function in X-chromosome inactivation has been extensively studied for three decades, though other functional roles of XIST that involve a variety of fascinating mechanisms remain to be elucidated. Here, we review the emerging oncogenic role of XIST in various human cancers.

BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer

  • Shin, Heegwon;Kim, Youngmi;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.993-999
    • /
    • 2018
  • One of the most interesting findings from genome-wide expression analysis is that a considerable amount of noncoding RNA (ncRNA) is present in the cell. Recent studies have identified diverse biological functions of ncRNAs, which are expressed in a much wider array of forms than proteins. Certain ncRNAs associated with diseases, in particular, have attracted research attention as novel therapeutic targets and diagnostic markers. BC200 RNA, a 200-nucleotide ncRNA originally identified as a neuron-specific transcript, is abnormally over-expressed in several types of cancer tissue. A number of recent studies have suggested mechanisms by which abnormal expression of BC200 RNA contributes to the development of cancer. In this article, we first provide a brief review of a recent progress in identifying functions of BC200 RNA in cancer cells, and then offer examples of other ncRNAs as new therapeutic targets and diagnostic markers for human cancer. Finally, we discuss future directions of studies on BC200 RNA for new cancer treatments.

Rho-dependent Transcription Termination: More Questions than Answers

  • Banerjee Sharmistha;Chalissery Jisha;Bandey Irfan;Sen Ranjan
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DNA hybrids and release RNA from a transcribing elongation complex. Studies over the past few decades have highlighted Rho as a molecule and have revealed much of its mechanistic properties. The recently solved crystal structure could explain many of its physiological functions in terms of its structure. Despite all these efforts, many of the fundamental questions pertaining to Rho recognition sites, differential ATPase activity in response to different RNAs, translocation of Rho along the nascent transcript, interactions with elongation complex and finally unwinding and release of RNA remain obscure. In the present review we have attempted to summarize 'the knowns' and 'the unknowns' of the Rho protein revealed by the recent developments in this field. An attempt has also been made to understand the physiology of Rho in the light of its phylogeny.

Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI;KIM JONG-MYUNG;YEOM JI-HYUN;KIM HYUN-LI;GO HA-YOUNG;SHIN EUN-KYOUNG;LEE KANGSEOK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1100-1105
    • /
    • 2005
  • Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.