• Title/Summary/Keyword: RNA stem-loop structure

Search Result 29, Processing Time 0.029 seconds

Nucleotide Sequence and Secondary Structure of 16S rRNA from Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77의 16S rRNA 염기서열과 이차구조)

  • Lee Kwan-Young;Kwon Hae-Ryong;Lee Won-Ho;Kim Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • A 16S ribosomal RNA gene from S. chungbukensis DJ77 has been sequenced. This sequence had a length of 1,502 bp and was extended for 29 bp at 5' and for 37 bp at 3' from the partial sequence (1,435 bp) registered in 2000 year. Besides, 1 bp was newly added near to the 3' end. We made the secondary structure of the 16S rRNA based on E. coli model and found four specific regions. We found constant and variable regions in genus Sphingomonas as the result of multiple alignment of 16S rRNA gene sequences from Sphingomonas spp. and S. chungbukensis DJ77. We found a stem loop structure in S. chungbukensis DJ77, which was only discovered in C. jejuni to date. It showed the structural agreement despite the difference of the sequences from the both organisms. Finally, S. chungbukensis DJ77 belonged to cluster II (Sphingobium) group, after the classification using phylogenetic analysis and nucleotide signature analysis.

Application of multi dimensional NMR experiments to VBS RNAs of Yeast Saccaromyces cerevisiae virus

  • Chaejoon Cheong;Cheong, Hae-Kap;Yoo, Jun-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • The structures of two VBS (viral binding site) RNAs, SL1 and SL2, of Yeast Saccharomyces cerevisiae vims have been studied by 2D and 3D NMR experiments. VBSs play a crucial role in viral particle binding to the plus strand and packaging of the RNA. The secondary structures of the two VBS RNAs share a common feature of the stem-internal loop-stem-hairpin loop structure although the size of the internal loops of SL1 and SL2 differs. 2D experiments were sufficient for fill assignments of SL1. However, isotope labeling of the sample and multidimensional experiments were required for 28-nucleotide-long SL2 due to the spectral overlap. Several 3D HCCH experiments have accomplished full assignment of SL2 RNA.

  • PDF

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

Plant RNA Virus-Host Interaction: Potato virus X as a model system

  • Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.14-14
    • /
    • 2003
  • Potato virus X (PVX), the type member of Potexvirus genus, is a flexuous rod-shaped virus containing a single-stranded (+) RNA. Infection by PVX produces genomic plus- and minus-strand RNAs and two major subgenomic RNAs (sgRNAs). To understand the mechanism for PVX replication, we are studying the cis- and/or trans-acting elements required for RNA replication. Previous studies have shown that the conserved sequences located upstream of two major sgRNAs, as well as elements in the 5' non-translated region (NTR) affect accumulation of genomic and sg RNAs. Complementarity between sequences at the 5' NTR and those located upstream of two major sgRNAs and the binding of host protein(s) to the 5' NTR have shown to be important for PVX RNA replication. The 5 NTR of PVX contains single-stranded AC-rich sequence and stem-loop structure. The potential role(s) of these cis-elements on virus replication, assembly, and their interaction with viral and host protein(s) during virus infection will be discussed based on the data obtained by in vitro binding, in vitro assembly, gel shift mobility assay, host gene expression profiling using various mutants at these regions.

  • PDF

Coregulation of lux Genes and Riboflavin Genes in Bioluminescent Bacteria of Photobacterium phosphoreum

  • Sung, Nack-Do;Lee, ChanYong
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.194-199
    • /
    • 2004
  • Investigation of the expression of the riboflavin (rib) genes, which are found immediately downstream of luxG in the lux operon in Photobacterium phosphoreum, provides more information relevant to the evolution of bioluminescence, as well as to the regulation of supply of flavin substrate for bacterial bioluminescence reactions. In order to answer the question of whether or not the transcriptions of lux and rib genes are integrated, a transcriptional termination assay was performed with P. phoxphoreum DNA, containing the possible stem-loop structures, located in the intergenic region of luxF and luxE ($\Omega$$\_$A/), of luxG and ribE ($\Omega$$\_$B/), and downstream of ribA ($\Omega$$\_$c/). The expression of the CAT (Chloram-phenicol Acetyl Transferase) reporter gene was remarkably decreased upon the insertion of the stem-loop structure ($\Omega$$\_$c/) into the strong lux promoter and the reporter gene. However, the insertion of the structure ($\Omega$$\_$B/) into the intergenic region of the lux and the rib genes caused no significant change in expression from the CAT gene. In addition, the single stranded DNA in the same region was protected by the P. phosphoreum mRNA from the Sl nuclease protection assay. These results suggest that lux genes and rib genes are part of the same operon in P. phosphoreum.

Study on the Structure of 5S rRNA from Pseudomonas alcaligenes by Metallotripeptides (금속펩타이드를 이용한 Pseudomonas alcaligenes의 5S rRNA의 구조 연구)

  • Kim, Hee-Joung;Kim, Si-Wouk;Koh, Moon-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.46-51
    • /
    • 2002
  • The recognition and cleavage of 5S rRNA from P. alcaligenes by metallopeptides to the form $Ni(II){\cdot}Gly$-Gly-His(Arg)COOH and $Cu(II){\cdot}Gly$-Gly-His(Arg)COOH were investigated. The results of RNA cleavage analyses suggest that metallopeptides selectively target the unpaired or unstably paired bases of stem-loop structure of 5S rRNA. The selectivity of metallopeptides was little affected by the species of metal ion, Ni(II) or Cu(II). When the result of cleavage by metallopeptides was compared with that of by metal complexes M(II)CR, the recognition by metallopeptides was more selective and structure specific. The cleavage data by metallopeptides and other metal complexes were used to probe the secondary structure of 5S rRNA from P. alcaligenes.

Effects of Chaperones on mRNA Stability and Gene Expression in Escherichia coli

  • Yoon, Hyun-Jin;Hong, Ji-Young;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.228-233
    • /
    • 2008
  • Effects of chaperones on mRNA stability and gene expression were studied in order to develop an efficient Escherichia coli expression system that can maximize gene expression. The stability of mRNA was modulated by introducing various secondary structures at the 5'-end of mRNA. Four vector systems providing different 5'-end structures were constructed, and genes encoding GFPuv and endoxylanase were cloned into the four vector systems. Primer extension assay revealed different mRNA half-lives depending on the 5'-end secondary structures of mRNA. In addition to the stem-loop structure at the 5'-end of mRNA, coexpression of dnaK-dnaJ-grpE or groEL-groES, representative heat-shock genes in E. coli, increased the mRNA stability and the level of gene expression further, even though the degree of stabilization was varied. Our work suggests that some of the heat-shock proteins can function as mRNA stabilizers as well s protein chaperones.

A Modeling Study of Co-transcriptional Metabolism of hnRNP Using FMR1 Gene

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.228-238
    • /
    • 2007
  • Since molecular structure of hnRNP is not available in foreseeable future, it is best to construct a working model for hnRNP structure. A geometric problem, assembly of $700{\pm}20$ nucleotides with 48 proteins, is visualized by a frame work in which all the proteins participate in primary binding, followed by secondary, tertiary and quaternary binding with neighboring proteins without additional import. Thus, 40S hnRNP contains crown-like secondary structure (48 stemloops) and appearance of 6 petal (octamers) rose-like architectures. The proteins are wrapped by RNA. Co-transcriptional folding for RNP fibril of FMR1 gene can produce 2,571 stem-loops with frequency of 1 stem-loop/15.3 nucleotides and 53 40S hnRNP beaded structure. By spliceosome driven reactions, there occurs removal of 16 separate lariated RNPs, joining 17 separate beaded exonic structures and anchoring EJC on each exon junction. Skipping exon 12 has 5'GU, 3'AG and very compact folding pattern with frequency of 1 stem-loop per 12 nucleotides in short exon length (63 nucleotides). 5' end of exon 12 contains SS (Splicing Silencer) element of UAGGU. In exons 10, 15 and 17 where both regular and alternative splice sites exist, SS (hnRNP A1 binding site) is observed at the regular splicing site. End products are mature FMR-1 mRNP, 4 species of Pri-microRNAs derived from introns 7,9,15 and 3'UTR of exon17, respectively. There may also be some other regulatory RNAs containing ALU/Line elements as well.

Structural Studies on the E. coli Methionyl-tRNA Synthetase and Their Interaction with E. coli $tRNA^{fMet}$

  • Kim Ji-Hun;Ahn Hee-Chul;Park Sung-Jin;Kim Sung-Hoon;Lee Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.110-121
    • /
    • 2005
  • E.coli methionyl tRNA synthetase consist of 676 amino acids and plays a key role in initiation of protein synthesis. The native form of this enzyme is a homodimer, but the monomeric enzyme truncated approximately C-terminal 120 amino acids retains the full enzymatic activities. X-ray crystal structure of the active monomeric enzyme shows that it has two domains. The N-terminal domain is thought to be a binding site for acceptor stem of tRNA, ATP, and methionine. The C-terminal domain is mainly a-helical and makes an interaction with the anticodon of $tRNA^{Met}$. Especially it is suggested that the region of helix-loop-helix including the tryptophan residue at the position 461 may be the essential for the interaction with anticodon of $tRNA^{Met}$. In this work the structure and function of E. coli methionyl-tRNA synthetase was studied by spectroscopic method (NMR, CD, Fluorescence). The importance of tryptophan residue at the position 461 was investigated by fluorescence spectroscopy. Tryptophan 461 is expected to be an essential site for the interaction between E. coli methionyl-tRNA synthetase and E. coli $tRNA^{Met}$. Proton and heteonuclear 2-dimensional NMR spectroscopy were also used to elucidate the protein-tRNA interaction.

  • PDF

Role of the Promoter Region of a Chicken H3 Histone Gene in Its Cell Cycle Dependent Expression

  • Son, Seung-Yeol
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.345-349
    • /
    • 1999
  • We fused the promoter region of an H3.2 chicken histone gene, whose expression is dependent on the cell cycle, to the 5' coding region of an H3.3 chicken histone gene, which is expressed constitutively at a low level throughout the cell cycle. This fusion gene showed a cell cycle-regulated pattern of expression, but in a different manner. The mRNA level of the fusion gene increase during the S phase of the cell cycle by about 3.7-fold at 6 h and 2.7-fold at 12 h after the serum stimulation. The mRNA level of the intact H3.2 gene, however, increased by an average of 3.6-fold at 6 h and 8.7-fold at 12 h. This different expression pattern might be due to the differences in their 3' end region that is responsible for mRNA stability. The 3' end of the H3.2 mRNA contains a stem-loop structure, instead of a poly(A) tail present in the H3.3 mRNA. We also constructed a similar fusion gene using a H3.3 histone gene whose introns had been eliminated to rule out the possibility of involvement of the introns in cell cycle-regulated expression. The expression of this fusion gene was almost identical to the fusion gene made previously. These results indicate that the promoter region of the H3.2 gene is only partially responsible for its expression during the S phase of the cell cycle.

  • PDF