A Modeling Study of Co-transcriptional Metabolism of hnRNP Using FMR1 Gene

  • Ro-Choi, Tae Suk (Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine) ;
  • Choi, Yong Chun (Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine)
  • Received : 2006.12.11
  • Accepted : 2007.02.13
  • Published : 2007.04.30

Abstract

Since molecular structure of hnRNP is not available in foreseeable future, it is best to construct a working model for hnRNP structure. A geometric problem, assembly of $700{\pm}20$ nucleotides with 48 proteins, is visualized by a frame work in which all the proteins participate in primary binding, followed by secondary, tertiary and quaternary binding with neighboring proteins without additional import. Thus, 40S hnRNP contains crown-like secondary structure (48 stemloops) and appearance of 6 petal (octamers) rose-like architectures. The proteins are wrapped by RNA. Co-transcriptional folding for RNP fibril of FMR1 gene can produce 2,571 stem-loops with frequency of 1 stem-loop/15.3 nucleotides and 53 40S hnRNP beaded structure. By spliceosome driven reactions, there occurs removal of 16 separate lariated RNPs, joining 17 separate beaded exonic structures and anchoring EJC on each exon junction. Skipping exon 12 has 5'GU, 3'AG and very compact folding pattern with frequency of 1 stem-loop per 12 nucleotides in short exon length (63 nucleotides). 5' end of exon 12 contains SS (Splicing Silencer) element of UAGGU. In exons 10, 15 and 17 where both regular and alternative splice sites exist, SS (hnRNP A1 binding site) is observed at the regular splicing site. End products are mature FMR-1 mRNP, 4 species of Pri-microRNAs derived from introns 7,9,15 and 3'UTR of exon17, respectively. There may also be some other regulatory RNAs containing ALU/Line elements as well.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Andersen, C. B., Ballut, L., Johansen, J. S., Chamieh, H., Nielsen, K. H., et al. (2006) Structure of the exon junction core complex with a trapped DEAD-Box ATPase bound to RNA. Science 313, 1968−1972
  2. Auweter, S. D., Oberstrass, F. C., and Allain, F. H.-T. (2006) Survey and Summary Sequence-specific binding of singlestranded RNA: is there a code for recognition? Nucl. Acid Res. 34, 543−549
  3. Beilina, A., Tassone, F., Schwartz, P. H., Sahota, P., and Hager man, P. J. (2004) Redistribution of transcription start sites within the FMR1 promoter region with expansion of the downstream CGG-repeat element. Hum. Mol. Genet. 13, 543−549
  4. Beyer, A. L. and Osheim, Y. N. (1990) Ultrastructural analysis of the ribonucleoprotein substrate for pre-mRNA processing; in The Eukaryotic Nucleus; Molecular Biochemistry and Macro molecular Assemblies, Staruss, P. R. and Wilson, S. H. (eds.), pp. 431−451, The Telfordm Press
  5. Calvet, J. P. and Pederson, T. (1977) Secondary structure of hetero geneous nuclear RNA: two classes of double-stranded RNA in native ribonucleoprotein. Proc. Natl. Acad. Sci. USA 74, 3705−3709
  6. Conway, G., Wooley, J., Bibribg, T., and LeStourgeon, W. M. (1988) Ribonucleoproteins package 700 nucleotides of premRNA into a repeating array of regular particles. Mol. Cell. Biol. 8, 2884−2895
  7. Cramer, P., Bushnell, D. A., and Kornberg, R. D. (2001) Structural basis of transcription: RNA poltmerase II at 2.8 Angstrom resolution. Science 292, 1863−1876 https://doi.org/10.1126/science.1059495
  8. Darst, S. A., Edwards, A. M., Kubalek, E. W., and Kornberg, R. D. (1991) Three-dimensional structure of yeast RNA polymerase II at 16 $\AA$ resolution. Cell 66, 121−128
  9. Ding , J., Hayashi, M. K., Zhang, Y., Manche, L., Krainer, A. R., et al. (1999) Crystal structure of the two-RRM domain of hnRNP A1 complexed with single-stranded telomeric DNA. Genes Dev. 13, 1102−1115
  10. Dreyfuss, G., Matunis, M. J., Piñol-Roma, S., and Burd, C. G. (1993) hnRNP Proteins and The Biogenesis of mRNA. Annu. Rev. Biochem. 62, 289−321
  11. Eichler, E. E., Richards, S., Gibbs, R. A., and Nelson, D. L. (1993) Fine structure of the human FMR1 gene. Human Mol. Genetics 2, 1147−1153
  12. Han, J., Lee, Y., Yeom, K.-H., Nam, J.-W. Heo, I., et al. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887−901
  13. Han, K. (2000) A graphical tool for parametric simulation of the RNA structure formation. Mol. Cells 10, 348−355
  14. Kim, H.-J. and Han, K. (1995) Automated modeling of the RNA folding process Mol. Cells 5, 406−412
  15. Jessen, T.-H., Oubridge, C., Teo, C. H., Prichard, C., and Nagai, K. (1991) Identification of molecular contacts between the U1A small nuclear ribonucleoprotein and U1 RNA. EMBO J. 10, 3447−3456
  16. Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N., and Moor, M. J. (2006) Purification and characterization of native spliceosomes suitable for three-dimensional structural anlysis. RNA 8, 426−439
  17. Law, M. J., Rice, A. J., Lin, P., and Laird-Offringa, I. A. (2006) The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA. RNA 12, 1168−1178
  18. Le Hir, H., Izaurralde, E., Maquat, L. E., and Moore, M. J. (2000) The spliceosome deposits multiple proteins 20−24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860− 6869
  19. LeStourgeon, W. M., Lothstein, L., Walker, B. W., and Beyer, A. L. (1981) The composition and general topology of RNA and protein in monomer 40S ribonucleoprotein particles; in The Cell Nucleus, Busch, H. (ed.), Vol. IX: Nuclear Particles, Part B, pp. 49−87, Academic Press, New York, New York
  20. LeStourgeon, W. M., Barnett, S. F., and Northington, S. J. (1990) Tetramer of the core proteins of 40S nuclear ribonucleoprotein particles assemble to package nascent transcripts into a repeating array of regular particles; in The Eukaryotic Nucleus, Strauss, P. R. and Wison, S. H. (eds.), Vol. 2, pp 477− 502, The Telford Press, New Jersey
  21. Lewin, B. (2004) RNA splicing and processing. Genes VIII, Chapter 24, pp 697−729. Pearson Prentice Hall, Pearson Education, Inc. Upper Saddle River, NJ 07458
  22. Lothstein, L., Arenstorf, H. P., Chung, S.-Y., Walker, B. W., Wooley, J. H., et al. (1985) General organization of protein in HeLa 40S nuclear ribonucleoprotein particles. J. Cell Biol. 100, 1570−1581
  23. Martin, T. E. and Okamura, C. S. (1981) Immunochemistry of nuclear hnRNP complexes; in The Cell Nucleus, Busch, H. (ed.), Vol. IX: Nuclear Particles, Part B, Chapter 4, pp. 119−144, Academic Press. New York, New York
  24. Myers, J. C., Moore, S. A., and Shamoo, Y. (2003) Structurebased incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl) is-oxanthopteridine into the human telomeric repeat DNA as a probe for UP1 binding and destabilization of G-tetrad structure. J. Biol. Chem. 278, 42300−42306
  25. Nam, J.-W., Kim, J., Kim, S.-K., and Zhang, B.-T. (2006) ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res. 34, W455−W458
  26. Napierala, M., Michalowski, D., de Mezer, M., and Krzyzosiak, W. J. (2005) Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res. 33, 451−463
  27. Nomura, M. and Held, W. A. (1974) Reconstitution of ribosomes: studies of ribosome structure, function and assembly; in Ribosome, Nomura, M., Tissieres, A., and Legyel, P. (eds.), pp. 193−223, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  28. Oubridge, C., Ito, N., Evans, P. R., Teo, C.-H., and Nagai, K. (1994) Crystal structure at 1.92$\AA$ resolution of the RNAbinding domain of the U1A Spliceosomal protein complexed with an RNA hairpin. Nature 372, 432−438
  29. Ro-Choi, T. S. (1999) Nuclear snRNA and nuclear function (discovery of 5′ cap structure in RNA) critical reviews in eukaryotic gene expression. Mol. Cells 9, 107−158
  30. Ro-Choi, T. S. and Choi, Y. C. (2003) Structural elements of dynamic RNA strings. Mol. Cells 16, 201−210
  31. Samarina, O. P. and Krichevskaya, A. A. (1981) Nuclear 30S RNP particles; in The Cell Nucleus, Nuclear particles, Busch, H. (ed.), part B, Chapter 1, pp.1-48, Academic Press
  32. Sittler, A., Devys, D., Weber, C., and Mandel, J.-L. (1996) Alternative splicing of exon 14 determines nuclear or cytoplasmic localization of fmr1 protein isoforms. Hum. Mol. Genet. 5, 95−102
  33. Skoglund, U., Andersson, K., Bjorkroth, B., Lamb, M. M., and Daneholt, B. (1983) Visualization of the formation and transport of a specific hnRNP particle. Cell 34, 847−855
  34. Sobczak, K., de Mezer, M., Michlewski, G., Krol, J., and Krzyzosiak, W. J. (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31, 5469−5482
  35. Tange, T. O., Shibuya, T., Jurica, M., and Moor, M. J. (2005) Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11, 1869−1883
  36. Tomari, Y. and Zamore, P. D. (2006) Perspective: machines for RNAi. Genes Dev. 19, 517−529
  37. Ujvari, A. and Luse, D. S. (2006) RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat. Struct. Mol. Biol. 13, 49−54 https://doi.org/10.1038/nsmb1106-954
  38. Verkerk, A. J. M. H., de Graaff, E., De Boulle, K., Eichler, E. E., Konecki, D. S., et al. (1993) Alternative splicing in the fragile X gene FMR1. Hum. Mol. Genet. 2, 399−404
  39. von Heijine, G. (1987) Sequence analysis in molecular biology, academic Press
  40. Voet, D. and Voet, J. G. (2004) Chapter 31 Transcription in Biochemistry, 3rd ed., pp. 1216−1284, John Wiley & Sons, Inc