• Title/Summary/Keyword: RNA granules

Search Result 37, Processing Time 0.024 seconds

Variation of Amylose Content Using dsRNAi Vector by Targeting 3'-UTR Region of GBSSI Gene in Rice (GBSSI 유전자 3'UTR 영역의 발현 억제 dsRNAi 벡터를 이용한 아밀로스함량 조절 벼 개발)

  • Park, Hyang-Mi;Choi, Man-Soo;Chun, Areum;Lee, Jeung-Heui;Kim, Myeong-Ki;Kim, Yeon-Gyu;Shin, Dong-Bum;Lee, Jang-Yong;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.515-524
    • /
    • 2010
  • The amylose content of starch is a major factor in the texture of cooked cereal grains. Therefore, down-regulation of amylose synthesis is one of the alternative method to improve eating quality of rice. We developed transgenic rice plants designed to suppress granule-bound starch synthase I(GBSSI) gene using RNA interference(RNAi) technology. Transgenic plants with RNAi vector containing the 3'-UTR region of GBSSI showed a lower amylose content in rice endosperm than that of wild-type. The range of amylose content was 5.9~9.0% in the transgenic plants, whereas that of wild-type was 17.7~18.0%. Transgenic rices showed the decrease of short chain and the increase of long chain by analyzing chain length distribution of amylopectin in the endosperm. In the SEM micrographs, we found that compound starch granules in whole grains of the wild-type rice were readily split during fracturing, while the starch granules in RNAi-transgenic lines showed small voluminous, non-angular rounded bodies.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Novel Discovery of Two Heterotrichid Ciliates, Climacostomum virens and Fabrea salina (Ciliophora: Heterotrichea: Heterotrichida) in Korea

  • Kim, Ji Hye;Shin, Mann Kyoon
    • Animal Systematics, Evolution and Diversity
    • /
    • v.31 no.3
    • /
    • pp.182-190
    • /
    • 2015
  • Two heterotrichid ciliates, Climacostomum virens (Ehrenberg, 1838) Stein, 1859 from brackish water and freshwater, and Fabrea salina Henneguy, 1890 from a solar saltern, were collected in Korea. They are novelly investigated in Korea by means of live observation, protargol staining and nuclear small subunit (SSU) rRNA gene sequencing. Climacostomum virens is characterized by pouch-like body shape, body length of $200-370{\mu}m$ in vivo, conspicuous cytopharyngeal tube, macronuclei ribbon-like shape, and one to four in number, with or without symbiont algae in cytoplasm, 34-66 somatic kineties, 67-113 adoral zone of membranelles, 8-42 peristomial kineties, 24-37 apical membranelles. SSU rDNA sequence size is 1,591 bp and GC contents 48.52%. Fabrea salina is also characterized by scoop-like body shape with proboscis, body length of $190-240{\mu}m$ in vivo, one to two rod-shaped macronuclei, oval micronuclei, grayish green cortical granules, 104-186 somatic kineties, 4-8 preoral kineties, 7-19 peristomial kineties and fragmented paroral membrane. SSU rDNA sequence size is 1,598 bp and GC contents 47.50%.

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.

Depletion of PDCD4 Accelerates Stress Granule Assembly Through Sensitization of Stress Response Pathways

  • Kim, Jeeho;Chang, In Youb;Lee, Wooje;Ohn, Takbum
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • Programmed cell death 4 (PDCD4) is a novel tumor suppressor that function in the nucleus and the cytoplasm and appears to be involved in the regulation of transcription and translation. Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate when cells exposed to environmental stresses. Since PDCD4 has implicated in translation repression through direct interaction with eukaryotic translation initiation factor 4A (eIF4A), we here investigated if PDCD4 has a functional role in the process of SG assembly under oxidative stresses. Using immunofluorescence microscopy, we found that PDCD4 is localized to SGs under oxidative stresses. Next, we tested if knockdown of PDCD4 has an effect on the assembly of SG using PDCD4-specific siRNA. Interestingly, SG assembly was accelerated and this effect was caused by sensitization of phosphorylation of eIF2α and dephosphorylation of eIF4E binding protein (4E-BP). These results suggest that PDCD4 has an effect on SG dynamics and possibly involved in cap-dependent translation repression under stress conditions.

Investigation of the effect of Staufen1 overexpression on the HIV-1 virus production

  • Park, Seong-won;Yu, Kyung-Lee;Bae, Jun-Hyun;Kim, Ga-Na;Kim, Hae-In;You, Ji Chang
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.551-556
    • /
    • 2021
  • In this study, we investigated how Staufen1 influences the HIV-1 production. The overexpression of Staufen1 increased virus production without any negative affect on the viral infectivity. This increase was not caused by transcriptional activation; but by influencing post-transcriptional steps. Using multiple Gag protein derivatives, we confirmed that the zinc-finger domains of the HIV-1 nucleocapsid (NC) are important for its interaction with Staufen1. We also found that Staufen1 colocalized in stress granules with the mature form of the HIV-1 NC protein.

Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro

  • Huang, Ziqiang;Pang, Yunwei;Hao, Haisheng;Du, Weihua;Zhao, Xueming;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1420-1430
    • /
    • 2018
  • Objective: Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and is considered one of the most promising bioactive compounds in green tea because of its strong antioxidant properties. However, the protective role of EGCG in bovine oocyte in vitro maturation (IVM) has not been investigated. Therefore, we aimed to study the effects of EGCG on IVM of bovine oocytes. Methods: Bovine oocytes were treated with different concentrations of EGCG (0, 25, 50, 100, and $200{\mu}M$), and the nuclear and cytoplasmic maturation, cumulus cell expansion, intracellular reactive oxygen species (ROS) levels, total antioxidant capacity, the early apoptosis and the developmental competence of in vitro fertilized embryos were measured. The mRNA abundances of antioxidant genes (nuclear factor erythriod-2 related factor 2 [NRF2], superoxide dismutase 1 [SOD1], catalase [CAT], and glutathione peroxidase 4 [GPX4]) in matured bovine oocytes were also quantified. Results: Nuclear maturation which is characterized by first polar body extrusion, and cytoplasmic maturation characterized by peripheral and cortical distribution of cortical granules and homogeneous mitochondrial distribution were significantly improved in the $50{\mu}M$ EGCG-treated group compared with the control group. Adding $50{\mu}M$ EGCG to the maturation medium significantly increased the cumulus cell expansion index and upregulated the mRNA levels of cumulus cell expansion-related genes (hyaluronan synthase 2, tumor necrosis factor alpha induced protein 6, pentraxin 3, and prostaglandin 2). Both the intracellular ROS level and the early apoptotic rate of matured oocytes were significantly decreased in the $50{\mu}M$ EGCG group, and the total antioxidant ability was markedly enhanced. Additionally, both the cleavage and blastocyst rates were significantly higher in the $50{\mu}M$ EGCG-treated oocytes after in vitro fertilization than in the control oocytes. The mRNA abundance of NRF2, SOD1, CAT, and GPX4 were significantly increased in the $50{\mu}M$ EGCG-treated oocytes. Conclusion: In conclusion, $50{\mu}M$ EGCG can improve the bovine oocyte maturation, and the protective role of EGCG may be correlated with its antioxidative property.

Effects of IL-3 and SCF on Histamine Production Kinetics and Cell Phenotype in Rat Bone Marrow-derived Mast Cells

  • Lee, Haneul Nari;Kim, Chul Hwan;Song, Gwan Gyu;Cho, Sung-Weon
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • Background: Rat mast cells were regarded as a good model for mast cell function in immune response. Methods: Rat bone marrow mast cells (BMMC) were prepared both by recombinant rat IL-3 (rrIL-3) and by recombinant mouse stem cell factor (rmSCF), and investigated for both proliferation and differentiation in time course. Rat BMMC was induced by culture of rat bone marrow cells (BMCs) in the presence of both rrIL-3 (5 ng/ml) and rmSCF (5 ng/ml). Culture media were changed 2 times per week with the cell number condition of $5{\times}10^4/ml$ in 6 well plate. Proliferation was analyzed by cell number and cell counting kit-8 (CCK-8) and differentiation was by rat mast cell protease (RMCP) II and histamine. Results: Cell proliferation rates reached a maximum at 8 or 11 days of culture and decreased thereafter. However, both RMCP II production and histamine synthesis peaked after 11 days of culture. By real time RT-PCR, the level of histidine decarboxylase mRNA was more than 500 times higher on culture day 11 than on culture day 5. By transmission electron microscopy, the cells were heterogeneous in size and contained cytoplasmic granules. Using gated flow cytometry, we showed that cultured BMCs expressed high levels of $Fc{\varepsilon}RI$ and the mast cell antigen, ganglioside, on culture day 11. Conclusion: These results indicate that rat BMMCs were generated by culturing BMCs in the presence of rrII-3 and rmSCF and that the BMMCs have the characteristics of mucosal mast cells.

Sphingopyxis granuli sp. nov., a $\beta$-Glucosidase-Producing Bacterium in the Family Sphingomonadaceae in $\alpha$-4 Subclass of the Proteobacteria

  • Kim Myung Kyum;Im Wan Taek;Ohta Hiroyuki;Lee Myung Jin;Lee Sung Taik
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.152-157
    • /
    • 2005
  • Strain Kw07$^T$, a Gram-negative, non-spore-forming, rod-shaped bacterium, was isolated from granules in an Up-flow Anaerobic Sludge Blanket (UASB) bioreactor used in the treatment of brewery waste­water. 16S rRNA gene sequence analysis revealed that strain Kw07T belongs to the a-4 subclass of the Proteobacteria, and the highest degree of sequence similarity was determined to be to Sphingopyxis macrogoltabida IFO 15033T (97.8%). Chemotaxonomic data revealed that strain Kw07T possesses a quinone system with the predominant compound Q-I0, the predominant fatty acid C,s:, OJ7c, and sphingolipids, aU of which corroborated our assignment ofthe strain to the Sphingopyxis genus. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Kw07T represents a distinct species. Based on these data, Kw07T (= KCTC 12209T = NBRC 100800T) should be classified as the type strain for a novel Sphingopyxis species, for which the name Sphingopyxis granuli sp. novo has been proposed.

PRK1, a Receptor-like Kinase from Petunia inflata, is Essential for Post-meiotic Development of Pollen and Embryo Sac

  • Pai, Hyun-Sook;Karunanandaa, Balasulojini;Gilroy, Simon;Kao, Teh-Hui
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.48-60
    • /
    • 1996
  • We previously identified and characterized a predominantly pollen-expressed gene of Petunia inflata that encodes a receptor-like kinase named PRK1. The extracellular domain of PRK1 contains leucine-rich repeats which have been implicated in protein-protein interactions, and the cytoplasmic domain was found to autophosphorylate on serine and tyrosine. To investigate the function PRK1 in pollen development, we transformed P. inflata plants with a construct containing the promoter of a predominantly pollen-expressed gene of tomato, LAT52, fused to an antisense PRK1 cDNA corresponding to part of the extracellular domain of PRK1, There transgenic plants were found to each produce approximately equal amounts of normal and aborted pollen. Analysis of the inheritance of the transgene inserts in two of the transgenic plants, ASRK-13 and ASRK-20, to their progeny revealed that certain transgene inserts cosegregated with the pollen abortion phenotype. Microscopic examination of the aborted pollen grains showed that their outer wall, the exine, was essentially normal, but that their cytoplasm contained only starch-like granules. Staining of the nuclei of the microspores at different stages of uninucleate stage. However, at subsequent stages half of the microspores completed mitosis and developed into normal binucleate pollen, but the other half initially remained uninucleate, then lost their nucleio. Analysis of the amounts of PRK1 mRNA and the antisense PRK1 transcript suggested that the pollen abortion phenotype most likely resulted from down-regulation of the PRK1 gene by the antisense PRK1 transgene. These results suggest that PRK1 plays an essential role in a signal transduction pathway that mediates post-meiotic development of microspores.

  • PDF