• 제목/요약/키워드: RNA, small interfering

검색결과 154건 처리시간 0.029초

Quercetin ameliorates glutamate toxicity-induced neuronal cell death by controlling calcium-binding protein parvalbumin

  • Kang, Ju-Bin;Park, Dong-Ju;Shah, Murad-Ali;Koh, Phil-Ok
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.26.1-26.12
    • /
    • 2022
  • Background: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. Objectives: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. Methods: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. Results: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. Conclusions: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.

폐암세포주에서 Heme Oxygenase-1의 역할 (The Role of Heme Oxygenase-1 in Lung Cancer Cells)

  • 정종훈;김학렬;김은정;황기은;김소영;박정현;김휘정;양세훈;정은택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제60권3호
    • /
    • pp.304-313
    • /
    • 2006
  • 연구배경 : Heme oxygenase-1 (HO-1)은 heme의 분해 대사과정에 관여하는 유도성 효소로 heme을 분해하여 biliverdin, free iron, 및 일산화탄소 등을 생성시킨다. HO-1의 발현은 다양한 스트레스성 자극에 반응하여 생체방어 기능을 갖는 것으로 알려져 있는데 세포성장이나 세포사 특히 세포고사를 조절하는 것으로 보고되고 있다. 현재 신장암, 전립선암, 간암, 육종 등의 고형암에서 발현됨이 알려져 있고, 실제 HO-1 억제제를 투여했을 때 암성장이 억제됨이 보고되었다. 저자들은 폐암세포주들에서 HO-1의 발현유무와 그 역할을 규명하고 나아가 HO-1 억제제의 치료제로서의 가능성을 알아보고자 하였다. 방 법 : 비소세포폐암세포주인 A549, H23, NCI-H157, NCI-H460을 이용하였다. 세포독성은 MTT 방법으로 구하였고, HO-1의 발현은 Western blotting으로 확인하였다. HO의 효소활성은 시간당 세포단백질의 mg당 형성된 빌리루빈의 양을 이용하여 측정하였다. 또한 $H_2O_2$의 생성은 horse radish peroxidase(HRP)와 형광물질인 2',7'-dichlorofluorescein(DCF)를 이용한 두 가지 방법을 이용하였다. A549세포에 HO-1 small interfering RNA(siRNA)을 주입하여 유식세포 분석과 caspase-3에 대한 Western blotting을 통하여 세포고사유무를 확인하였다. 결 과 : 비처리 상태에서 다른 세포주에 비해 A549세포의 HO-1 발현이 증가되었으며 HO-1 활성억제제인 ZnPP를 처리하였을 때 생존율의 의미 있는 감소를 보였다. 이러한 소견과 일치하여 ZnPP는 용량의존적으로 HO 의 효소활성 감소와 세포 내 $H_2O_2$ 생성의 증가를 초래하였다. 또한 HO-1 siRNA로 주입된 A549세포는 세포고사를 유도하였다. 결 론 : HO-1은 폐암의 치료에 있어서 새로운 분자생물학적 기전의 가능성을 제시하여 HO-1에 대한 표적치료의 가능성을 보여줄 것으로 기대된다.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

NMDA를 처리한 HT-22 신경세포에서 미토콘드리아 손상을 완화하는 레스베라트롤의 보호 효과와 헴 산화효소-1의 역할 (Resveratrol Ameliorates NMDA-induced Mitochondrial Injury by Enhanced Expression of Heme Oxygenase-1 in HT-22 Neuronal Cells)

  • 강재훈;우재석
    • 생명과학회지
    • /
    • 제32권1호
    • /
    • pp.11-22
    • /
    • 2022
  • 뇌 등 신경 조직에서 흥분성 신경전달물질의 일종인 글루탐산(glutamate)에 의해 유도되는 신경세포 독성에 N-methyl-D-aspartate (NMDA) 수용체가 중요하게 관여함은 잘 알려져 있다. 레스베라트롤(resveratrol)은 자연식품에서 얻어지는 가장 잘 알려진 폴리페놀(polyphenol)의 일종으로 글루탐산에 의해 유도되는 신경세포 독성을 완화하는 효과가 있는 것으로 보고되었으나 그 기전은 명확히 밝혀져 있지 않다. 본 연구에서는 NMDA를 처리한 HT-22 신경세포를 신경세포 독성 모델로 이용하여 미토콘드리아 손상에 미치는 레스베라트롤의 보호 효과와 그 기전을 연구하고자 하였다. NMDA를 처리한 HT-22 신경세포에서 MTT 환원능의 감소와 미토콘드리아 막전위의 소실, 세포 내 ATP 농도의 감소, 활성산소종 생성의 증가, 미토콘드리아 막 투과성의 증가(mitochondrial permeability transition) 등 미토콘드리아의 기능적, 형태학적 손상을 시사하는 지표 변화들이 관찰되었다. 또한 미토콘드리아 손상의 결과로 세포사멸(apoptosis)이 증가함도 확인하였다. 레스베라트롤은 NMDA에 의한 미토콘드리아 손상과 세포사멸을 현저히 방지하는 보호 효과를 보였다. 헴 산화효소-1(heme oxygenase-1) 활성 억제제인 아연 프로토포르피린-9(zinc protoporphyrin IX)을 전처리한 세포에서는 레스베라트롤의 보호 효과가 현저히 약화되었으며, 반면에 heme oxygenase-1 활성 촉진제인 코발트 프로토포르피린(cobalt protoporphyrin)과 빌리루빈(bilirubin)은 레스베라트롤과 유사한 보호 효과를 나타내었다. 실시간 정량중합효소연쇄반응(RT-qPCR) 검사와, 웨스턴 블롯(Western blot) 검사로 확인한 결과 레스베라트롤은 헴 산화효소-1의 mRNA와 단백 발현을 증가시킴을 확인할 수 있었다. 짧은 간섭 RNA (small interfering RNA)를 형질주입(transfection)하여 헴 산화효소-1의 발현을 일시적으로 차단(knock down)한 세포에서는 레스베라트롤의 보호 효과가 관찰되지 않았다. 이상의 결과를 종합하면 레스베라트롤은 NMDA를 처리한 HT-22 신경세포에서 미토콘드리아의 기능적, 형태학적 손상을 완화하여 신경세포 독성에 대한 보호 효과를 나타내며 그 기전에는 헴 산화효소-1의 발현 증가가 중요하게 작용함을 시사한다.

miR-4463 regulates aromatase expression and activity for 17β-estradiol synthesis in response to follicle-stimulating hormone

  • Lee, Su-Yeon;Kang, Youn-Jung;Kwon, Jinie;Nishi, Yoshihiro;Yanase, Toshihiko;Lee, Kyung-Ah;Koong, Mi Kyoung
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권3호
    • /
    • pp.194-206
    • /
    • 2020
  • Objective: The aim of this study was to investigate microRNAs (miRNAs) related to follicle-stimulating hormone (FSH) responsiveness using miRNA microarrays and to identify their target genes to determine the molecular regulatory pathways involved in FSH signaling in KGN cells. Methods: To change the cellular responsiveness to FSH, KGN cells were treated with FSH receptor (FSHR)-specific small interfering RNA (siRNA) followed by FSH. miRNA expression profiles were determined through miRNA microarray analysis. Potential target genes of selected miRNAs were predicted using bioinformatics tools, and their regulatory function was confirmed in KGN cells. Results: We found that six miRNAs (miR-1261, miR-130a-3p, miR-329-3p, miR-185-5p, miR-144-5p and miR-4463) were differentially expressed after FSHR siRNA treatment in KGN cells. Through a bioinformatics analysis, we showed that these miRNAs were predicted to regulate a large number of genes, which we narrowed down to cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and estrogen receptor alpha (ESR1) as the main targets for miR-4463. Functional analysis revealed that miR-4463 is a regulatory factor for aromatase expression and function in KGN cells. Conclusion: In this study, we identified differentially expressed miRNAs related to FSH responsiveness. In particular, upregulation of miR-4463 expression by FSHR deficiency in human granulosa cells impaired 17β-estradiol synthesis by targeting CYP19A1 and ESR1. Therefore, our data might provide novel candidates for molecular biomarkers for use in research into poor responders.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2

  • Park, Gunhyuk;Oh, Myung Sook
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.467-472
    • /
    • 2015
  • Heat shock increases skin temperature during sun exposure and some evidence indicates that it may be involved in skin aging. The antioxidant response mediated by the transcription factor NF-E2-related factor 2 (Nrf2) is a critically important cellular defense mechanism that serves to limit skin aging. We investigated the effects of heat shock on collagenase expression when the antioxidant defense system was downregulated by knockdown of Nrf2. GSH and collagenases were analyzed, and the expression of inducible Nrf2, HO-1, and NQO1 was measured. HS68 cells were transfected with small interfering RNA against Nrf2. Heat shock induced the downregulation of Nrf2 in both the cytosol and nucleus and reduced the expression of HO-1, GSH, and NQO1. In addition, heat-exposed Nrf2-knockdown cells showed significantly increased levels of collagenase protein and decreased levels of procollagen. Our data suggest that Nrf2 plays an important role in protection against heat shock-induced collagen breakdown in skin. [BMB Reports 2015; 48(8): 467-472]

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • 제50권9호
    • /
    • pp.454-459
    • /
    • 2017
  • Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and $Ca^{2+}$-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B ($NF-{\kappa}B$) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpression of Tusc2 in osteoclast precursor cells enhanced receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. In contrast, small interfering RNA-mediated knockdown of Tusc2 strongly inhibited osteoclast differentiation. In addition, Tusc2 induced the activation of RANKL-mediated $NF-{\kappa}B$ and calcium/calmodulin-dependent kinase IV (CaMKIV)/cAMP-response element (CRE)-binding protein CREB signaling cascades. Taken together, these results suggest that Tusc2 acts as a positive regulator of RANKL-mediated osteoclast differentiation.

목향(木香)함유 DHL과 ML이 간세포 보호에 미치는 영향 (Effects of Radix Saussurea on hepatoprotection)

  • 박종찬;윤용갑
    • 대한한의학방제학회지
    • /
    • 제16권2호
    • /
    • pp.193-204
    • /
    • 2008
  • Dehydrocostus lactone (DHL) and Mokko lactone (ML) were isolated from Saussureae Radix, and their effects on heme oxygenase-1 (HO-1) expression and hepatoprotection in the liver cell line HepG2 were investigated. DHL induced HO-1 expression and HO activity in a dose-dependent manner, whereas ML lacking one double bond property at 11 and 13 carbons on its own chemical structure had no apparent effects. DHL also induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) activation which mediated HO-1 gene transcription. Pretreatment with DHL protected HepG2 cells against oxidative damages caused by H2O2. Interestingly, the hepatoprotective effects of DHL appeared to be associated with HO enzymatic activation, HO-1 expression and Nrf2 activation, because blockage of HO activity by a HO inhibitor and inhibition of HO-1 and Nrf2 cellular synthesis by small interfering RNA abolished heptoprotection afforded by DHL. Taken together, this investigation provides evidence supporting that Saussureae Radix is hepatoprotective against oxidative stress that causes abnormal liver damages.

  • PDF