References
- Boyle WJ, Simonet WS and Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
- Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24, 33-63 https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289, 1504-1508 https://doi.org/10.1126/science.289.5484.1504
- Ogasawara T, Kawaguchi H, Jinno S et al (2004) Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol 24, 6560-6568 https://doi.org/10.1128/MCB.24.15.6560-6568.2004
- Kim JH and Kim N (2016) Signaling Pathways in Osteoclast Differentiation. Chonnam Med J 52, 12-17 https://doi.org/10.4068/cmj.2016.52.1.12
- Kim JH and Kim N (2014) Regulation of NFATc1 in Osteoclast Differentiation. J Bone Metab 21, 233-241 https://doi.org/10.11005/jbm.2014.21.4.233
- Kim K, Kim JH, Lee J et al (2005) Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 280, 35209-35216 https://doi.org/10.1074/jbc.M505815200
- Kim K, Lee SH, Ha Kim J, Choi Y and Kim N (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol 22, 176-185 https://doi.org/10.1210/me.2007-0237
- Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901 https://doi.org/10.1016/S1534-5807(02)00369-6
- Hwang SY and Putney JW Jr (2011) Calcium signaling in osteoclasts. Biochim Biophys Acta 1813, 979-983 https://doi.org/10.1016/j.bbamcr.2010.11.002
- Hogan PG, Chen L, Nardone J and Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17, 2205-2232 https://doi.org/10.1101/gad.1102703
- Racioppi L and Means AR (2008) Calcium/calmodulindependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller. Trends Immunol 29, 600-607 https://doi.org/10.1016/j.it.2008.08.005
- Sato K, Suematsu A, Nakashima T et al (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12, 1410-1416 https://doi.org/10.1038/nm1515
- Ang ES, Zhang P, Steer JH et al (2007) Calcium/calmodulindependent kinase activity is required for efficient induction of osteoclast differentiation and bone resorption by receptor activator of nuclear factor kappa B ligand (RANKL). J Cell Physiol 212, 787-795 https://doi.org/10.1002/jcp.21076
- Krueger JK, Olah GA, Rokop SE, Zhi G, Stull JT and Trewhella J (1997) Structures of calmodulin and a functional myosin light chain kinase in the activated complex: a neutron scattering study. Biochemistry 36, 6017-6023 https://doi.org/10.1021/bi9702703
- Prudkin L, Behrens C, Liu DD et al (2008) Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clin Cancer Res 14, 41-47 https://doi.org/10.1158/1078-0432.CCR-07-1252
- Ivanova AV, Ivanov SV, Prudkin L et al (2009) Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects. Mol Cancer 8, 91 https://doi.org/10.1186/1476-4598-8-91
- Li G, Kawashima H, Ji L et al (2011) Frequent absence of tumor suppressor FUS1 protein expression in human bone and soft tissue sarcomas. Anticancer Res 31, 11-21
- Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R and Ivanova AV (2014) Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-kappaB pathways in CD4+ T cells. Antioxid Redox Signal 20, 1533-1547 https://doi.org/10.1089/ars.2013.5437
- Kim K, Kim JH, Youn BU, Jin HM and Kim N (2010) Pim-1 regulates RANKL-induced osteoclastogenesis via NF-kappaB activation and NFATc1 induction. J Immunol 185, 7460-7466 https://doi.org/10.4049/jimmunol.1000885
- Kajiya H (2012) Calcium signaling in osteoclast differentiation and bone resorption. Adv Exp Med Biol 740, 917-932
- Uzhachenko R, Shanker A, Yarbrough WG and Ivanova AV (2015) Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 6, 20754-20772 https://doi.org/10.18632/oncotarget.4537
- Takami M, Woo JT, Takahashi N, Suda T and Nagai K (1997) Ca2+-ATPase inhibitors and Ca2+-ionophore induce osteoclast-like cell formation in the cocultures of mouse bone marrow cells and calvarial cells. Biochem Biophys Res Commun 237, 111-115 https://doi.org/10.1006/bbrc.1997.7090
- Franzoso G, Carlson L, Xing L et al (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11, 3482-3496 https://doi.org/10.1101/gad.11.24.3482
- Takatsuna H, Asagiri M, Kubota T et al (2005) Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-kappaB inhibitor, through downregulation of NFATc1. J Bone Miner Res 20, 653-662
- Asagiri M, Sato K, Usami T et al (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202, 1261-1269 https://doi.org/10.1084/jem.20051150
- Dolmetsch RE, Lewis RS, Goodnow CC and Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855-858 https://doi.org/10.1038/386855a0
- Lilienbaum A and Israel A (2003) From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol 23, 2680-2698 https://doi.org/10.1128/MCB.23.8.2680-2698.2003
- Tabary O, Boncoeur E, de Martin R et al (2006) Calciumdependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells. Cell Signal 18, 652-660 https://doi.org/10.1016/j.cellsig.2005.06.004
- Boland ML, Chourasia AH and Macleod KF (2013) Mitochondrial dysfunction in cancer. Front Oncol 3, 292
- Boyce BF, Xiu Y, Li J, Xing L and Yao Z (2015) NF-kappaB-mediated regulation of osteoclastogenesis. Endocrinol Metab (Seoul) 30, 35-44 https://doi.org/10.3803/EnM.2015.30.1.35
- Park HJ, Baek K, Baek JH and Kim HR (2015) The cooperation of CREB and NFAT is required for PTHrPinduced RANKL expression in mouse osteoblastic cells. J Cell Physiol 230, 667-679 https://doi.org/10.1002/jcp.24790
- Kim K, Kim JH, Lee J et al (2007) MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259 https://doi.org/10.1182/blood-2006-09-048249
- Song I, Jeong BC, Choi YJ, Chung YS, Kim N (2016) GATA4 negatively regulates bone sialoprotein expression in osteoblasts. BMB Rep 49, 343-348 https://doi.org/10.5483/BMBRep.2016.49.6.032
Cited by
- Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility vol.51, pp.7, 2018, https://doi.org/10.5483/BMBRep.2018.51.7.106
- Common signalling pathways in macrophage and osteoclast multinucleation vol.131, pp.11, 2018, https://doi.org/10.1242/jcs.216267
- Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201800866RR