References
- Filippova GN, Qi CF, Ulmer JE et al (2002) Tumorassociated zinc finger mutations in the CTCF transcription factor selectively alter tts DNA-binding specificity. Cancer Res 62, 48-52
- Nora EP, Goloborodko A, Valton AL et al (2017) Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell 169, 930-944 e922 https://doi.org/10.1016/j.cell.2017.05.004
- Fiorito E, Sharma Y, Gilfillan S et al (2016) CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions. Nucleic Acids Res 44, 10588-10602 https://doi.org/10.1093/nar/gkw785
- Barutcu AR, Lajoie BR, Fritz AJ et al (2016) SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Res 26, 1188-1201 https://doi.org/10.1101/gr.201624.115
- Phillips JE and Corces VG (2009) CTCF: master weaver of the genome. Cell 137, 1194-1211 https://doi.org/10.1016/j.cell.2009.06.001
- Ong CT and Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15, 234-246 https://doi.org/10.1038/nrg3663
- Jerkovic I, Ibrahim DM, Andrey G et al (2017) Genome-Wide Binding of Posterior HOXA/D Transcription Factors Reveals Subgrouping and Association with CTCF. PLoS Genet 13, e1006567 https://doi.org/10.1371/journal.pgen.1006567
- Nakamoto M, Ishihara K, Watanabe T et al (2017) The Glucocorticoid Receptor Regulates the ANGPTL4 Gene in a CTCF-Mediated Chromatin Context in Human Hepatic Cells. PLoS One 12, e0169225 https://doi.org/10.1371/journal.pone.0169225
- Hsu SC, Gilgenast TG, Bartman CR et al (2017) The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries. Mol Cell 66, 102-116 e107 https://doi.org/10.1016/j.molcel.2017.02.027
- Chen L, Zhao L, Alt FW and Krangel MS (2016) An Ectopic CTCF Binding Element Inhibits Tcrd Rearrangement by Limiting Contact between Vdelta and Ddelta Gene Segments. J Immunol 197, 3188-3197 https://doi.org/10.4049/jimmunol.1601124
- Braikia FZ, Oudinet C, Haddad D et al (2017) Inducible CTCF insulator delays the IgH 3' regulatory regionmediated activation of germline promoters and alters class switching. Proc Natl Acad Sci U S A 114, 6092-6097 https://doi.org/10.1073/pnas.1701631114
- Chan CS and Song JS (2008) CCCTC-binding factor confines the distal action of estrogen receptor. Cancer Res 68, 9041-9049 https://doi.org/10.1158/0008-5472.CAN-08-2632
- Nagy G, Czipa E, Steiner L et al (2016) Motif oriented high-resolution analysis of ChIP-seq data reveals the topological order of CTCF and cohesin proteins on DNA. BMC Genomics 17, 637 https://doi.org/10.1186/s12864-016-2940-7
- Gregor A, Oti M, Kouwenhoven EN et al (2013) De novo mutations in the genome organizer CTCF cause intellectual disability. Am J Hum Genet 93, 124-131 https://doi.org/10.1016/j.ajhg.2013.05.007
- Herold M, Bartkuhn M and Renkawitz R (2012) CTCF: insights into insulator function during development. Development 139, 1045-1057 https://doi.org/10.1242/dev.065268
- Bastaki F, Nair P, Mohamed M et al (2017) Identification of a novel CTCF mutation responsible for syndromic intellectual disability - a case report. BMC Med Genet 18, 68
- Prawitt D, Enklaar T, Gartner-Rupprecht B et al (2005) Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith- Wiedemann syndrome and Wilms' tumor. Proc Natl Acad Sci U S A 102, 4085-4090 https://doi.org/10.1073/pnas.0500037102
- Aulmann S, Blaker H, Penzel R, Rieker RJ, Otto HF and Sinn HP (2003) CTCF gene mutations in invasive ductal breast cancer. Breast Cancer Res Treat 80, 347-352 https://doi.org/10.1023/A:1024930404629
- Katainen R, Dave K, Pitkanen E et al (2015) CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 47, 818-821 https://doi.org/10.1038/ng.3335
- Chitayat D, Friedman JM, Anderson L and Dimmick JE (1988) Hepatocellular carcinoma in a child with familial Russell-Silver syndrome. Am J Med Genet 31, 909-914 https://doi.org/10.1002/ajmg.1320310425
- Bruckheimer E and Abrahamov A (1993) Russell-Silver syndrome and Wilms tumor. J Pediatr 122, 165-166
- Weiss GR and Garnick MB (1981) Testicular cancer in a Russell-Silver dwarf. J Urol 126, 836-837 https://doi.org/10.1016/S0022-5347(17)54773-4
- Draznin MB, Stelling MW and Johanson AJ (1980) Silver-Russell syndrome and craniopharyngioma. J Pediatr 96, 887-889 https://doi.org/10.1016/S0022-3476(80)80570-1
- Kemp CJ, Moore JM, Moser R et al (2014) CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep 7, 1020-1029 https://doi.org/10.1016/j.celrep.2014.04.004
- Suzuki H, Komiya A, Emi M et al (1996) Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 17, 225-233 https://doi.org/10.1002/(SICI)1098-2264(199612)17:4<225::AID-GCC4>3.0.CO;2-5
- Maw MA, Grundy PE, Millow LJ et al (1992) A third Wilms' tumor locus on chromosome 16q. Cancer Res 52, 3094-3098
- Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoorn NJ et al (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes Cancer 9, 101-107 https://doi.org/10.1002/gcc.2870090205
- Lindblom A, Rotstein S, Skoog L, Nordenskjold M and Larsson C (1993) Deletions on chromosome 16 in primary familial breast carcinomas are associated with development of distant metastases. Cancer Res 53, 3707-3711
- Kaiser VB, Taylor MS and Semple CA (2016) Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types. PLoS Genet 12, e1006207 https://doi.org/10.1371/journal.pgen.1006207
- Poulos RC, Thoms JA, Guan YF, Unnikrishnan A, Pimanda JE and Wong JW (2016) Functional Mutations Form at CTCF-Cohesin Binding Sites in Melanoma Due to Uneven Nucleotide Excision Repair across the Motif. Cell Rep 17, 2865-2872 https://doi.org/10.1016/j.celrep.2016.11.055
- Zhou XL, Werelius B and Lindblom A (2004) A screen for germline mutations in the gene encoding CCCTC-binding factor (CTCF) in familial non-BRCA1/BRCA2 breast cancer. Breast Cancer Res 6, R187-190 https://doi.org/10.1186/bcr774
- Tiffen JC, Bailey CG, Marshall AD et al (2013) The cancer-testis antigen BORIS phenocopies the tumor suppressor CTCF in normal and neoplastic cells. Int J Cancer 133, 1603-1613 https://doi.org/10.1002/ijc.28184
- Venkatraman B and Klenova E (2015) Role of CTCF poly(ADP-Ribosyl)ation in the regulation of apoptosis in breast cancer cells. Indian J Med Paediatr Oncol 36, 49-54 https://doi.org/10.4103/0971-5851.151784
- Torrano V, Navascues J, Docquier F et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119, 1746-1759 https://doi.org/10.1242/jcs.02890
- Docquier F, Kita GX, Farrar D et al (2009) Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation. Clin Cancer Res 15, 5762-5771 https://doi.org/10.1158/1078-0432.CCR-09-0329
- Butcher DT and Rodenhiser DI (2007) Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur J Cancer 43, 210-219 https://doi.org/10.1016/j.ejca.2006.09.002
- Wang D, Li C and Zhang X (2014) The promoter methylation status and mRNA expression levels of CTCF and SIRT6 in sporadic breast cancer. DNA Cell Biol 33, 581-590 https://doi.org/10.1089/dna.2013.2257
- Del Campo EP, Marquez JJ, Reyes-Vargas F et al (2014) CTCF and CTCFL mRNA expression in 17beta-estradioltreated MCF7 cells. Biomed Rep 2, 101-104 https://doi.org/10.3892/br.2013.200
- Martin-Kleiner I (2012) BORIS in human cancers - a review. Eur J Cancer 48, 929-935 https://doi.org/10.1016/j.ejca.2011.09.009
- Mendez-Catala CF, Gretton S, Vostrov A et al (2013) A novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells. Neoplasia 15, 898-912 https://doi.org/10.1593/neo.121948
- Mustafa M, Lee JY and Kim MH (2015) CTCF negatively regulates HOXA10 expression in breast cancer cells. Biochem Biophys Res Commun 467, 828-834 https://doi.org/10.1016/j.bbrc.2015.10.058
- Teif VB, Beshnova DA, Vainshtein Y et al (2014) Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res 24, 1285-1295 https://doi.org/10.1101/gr.164418.113
- Wang H, Maurano MT, Qu H et al (2012) Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22, 1680-1688 https://doi.org/10.1101/gr.136101.111
- Victoria-Acosta G, Vazquez-Santillan K, Jimenez-Hernandez L et al (2015) Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding. Sci Rep 5, 14838 https://doi.org/10.1038/srep14838
- Peng Z, Shen R, Li YW, Teng KY, Shapiro CL and Lin HJ (2012) Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PLoS One 7, e36891 https://doi.org/10.1371/journal.pone.0036891
- Yao Z and Sherif ZA (2016) The effect of epigenetic silencing and TP53 mutation on the expression of DLL4 in human cancer stem disorder. Oncotarget 7, 62976-62988 https://doi.org/10.18632/oncotarget.11316
- de Souza Rocha Simonini P, Breiling A, Gupta N et al (2010) Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 70, 9175-9184 https://doi.org/10.1158/0008-5472.CAN-10-1318
- Soto-Reyes E, Gonzalez-Barrios R, Cisneros-Soberanis F et al (2012) Disruption of CTCF at the miR-125b1 locus in gynecological cancers. BMC Cancer 12, 40 https://doi.org/10.1186/1471-2407-12-40
- Jiang F, Liu T, He Y et al (2011) MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo. BMC Cancer 11, 425 https://doi.org/10.1186/1471-2407-11-425
- Zhang Y, Liang J, Li Y et al (2010) CCCTC-binding factor acts upstream of FOXA1 and demarcates the genomic response to estrogen. J Biol Chem 285, 28604-28613 https://doi.org/10.1074/jbc.M110.149658
- Tang Z, Luo OJ, Li X et al (2015) CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell 163, 1611-1627 https://doi.org/10.1016/j.cell.2015.11.024
- Seitan VC, Faure AJ, Zhan Y et al (2013) Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res 23, 2066-2077 https://doi.org/10.1101/gr.161620.113
- Heidari N, Phanstiel DH, He C et al (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res 24, 1905-1917 https://doi.org/10.1101/gr.176586.114
- Wu Q, Lian JB, Stein JL, Stein GS, Nickerson JA and Imbalzano AN (2017) The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics 9, 919-931 https://doi.org/10.2217/epi-2017-0034
- Bai J, Mei P, Zhang C et al (2013) BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS One 8, e59772 https://doi.org/10.1371/journal.pone.0059772
- Wu Q, Sharma S, Cui H et al (2016) Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells. Oncotarget 7, 27158-27175 https://doi.org/10.18632/oncotarget.8384
- Shukla S, Kavak E, Gregory M et al (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74-79 https://doi.org/10.1038/nature10442
- Dutertre M, Gratadou L, Dardenne E et al (2010) Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res 70, 3760-3770 https://doi.org/10.1158/0008-5472.CAN-09-3988
- Ross-Innes CS, Brown GD and Carroll JS (2011) A co-ordinated interaction between CTCF and ER in breast cancer cells. BMC Genomics 12, 593 https://doi.org/10.1186/1471-2164-12-593
- Docquier F, Farrar D, D'Arcy V et al (2005) Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis. Cancer Res 65, 5112-5122 https://doi.org/10.1158/0008-5472.CAN-03-3498
- Meeran SM, Patel SN and Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5, e11457 https://doi.org/10.1371/journal.pone.0011457
- Klenova EM, Morse HC 3rd, Ohlsson R and Lobanenkov VV (2002) The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12, 399-414 https://doi.org/10.1016/S1044-579X(02)00060-3
- D'Arcy V, Pore N, Docquier F et al (2008) BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours. Br J Cancer 98, 571-579 https://doi.org/10.1038/sj.bjc.6604181
- Dougherty CJ, Ichim TE, Liu L et al (2008) Selective apoptosis of breast cancer cells by siRNA targeting of BORIS. Biochem Biophys Res Commun 370, 109-112 https://doi.org/10.1016/j.bbrc.2008.03.040
Cited by
- Prognostic and Predictive Epigenetic Biomarkers in Oncology vol.23, pp.1, 2019, https://doi.org/10.1007/s40291-018-0371-7