• Title/Summary/Keyword: RNA, Ribosomal, 16S

Search Result 160, Processing Time 0.026 seconds

Recent Update in Fecal Microbiota Transplantation (Fecal Microbiota Transplantation의 최근 동향)

  • Kim, Haejin;Kang, Kyungmin;Kim, Sujin;Im, Eunok
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.265-274
    • /
    • 2014
  • Gut microbiota is a group of microorganisms that resides in the intestine and serves many important functions in human health. Using 16S ribosomal RNA sequencing analysis, a wide variety of bacteria in human gastrointestinal tract has been identified along with intriguing findings that there is a different bacterial composition among individuals. Fecal microbiota transplantation (FMT) is a procedure of stool transplantation from healthy donors to patients suffering from various diseases. Specifically, FMT is able to alter the composition of gut microbiota of recipients and therefore could be an effective treatment for the patients with gastrointestinal diseases including recurrent Clostridium difficile infection, inflammatory bowel disease, and irritable bowel syndrome. Here we review a list of human diseases related to gut microbiota disturbance and the case studies of FMT. We also summarize medicines and diagnostic tools that are under development. Therefore, gut microbiota can be a next generation's biotherapy for promotion of health and treatment of chronic diseases.

Comparison of Harboring the Resistance Gene and Disc Diffusion Susceptibility Test Result in Staphylococcus pseudintermedius from the Bacterial Dermatitis (세균성 피부염 개에서 분리된 Staphylococcus pseudintermedius에서 항생제 감수성 검사와 내성 유전자 획득의 비교)

  • Jang, Hye-Jin;Son, Hyoung-Won;Kang, Hyo-Min;Han, Jae-Ik;Na, Ki-Jeong
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.158-161
    • /
    • 2015
  • Bacterial dermatitis is common disease that is necessary to treat with antibiotics. In recent, antibiotic-resistant bacteria is being increased in worldwide. The purpose of the present study was to evaluate the prevalence of resistant genes in Staphylococcus (S.) pseudintermedius isolated from dogs, and to compare the resistant gene profile with the result of antibiotic disc diffusion test. A total of seven S. pseudintermedius was included in the study. Bacterial identification was performed by 16S ribosomal RNA gene sequence analysis. S. pseudintermedius isolates had more than one antibiotic resistant gene (mecA, blaZ and aac(6')/aph(2"). While all isolates were PCR positive to blaZ gene, only two isolates were resistant to amoxicillin/clavulanate. Among five isolates harboring gentamicin resistance, one isolate was negative to aac(6')/aph(2")-targeted PCR. Taken together, the results suggest that resistant gene-targeted PCR and disc diffusion test are complementary to detect antibiotic resistance.

Molecular Identification and First Morphological Description of Larvae and Juveniles of Neosalanx anderssoni (Salangidae) Collected from the Southwestern Sea of Korea (한국 서해 남부해역에서 채집된 도화뱅어, Neosalanx anderssoni (뱅어과) 자치어의 분자 동정 및 첫 형태기재)

  • Seo-Yeon Koo;Se-Hun Myoung;Jin-Koo Kim
    • Korean Journal of Ichthyology
    • /
    • v.36 no.1
    • /
    • pp.94-100
    • /
    • 2024
  • During ichthyoplankton survey in the southwestern sea of Korea, we collected six individuals of noodlefish larvae and juveniles between April and May 2023. They were identified as Neosalanx anderssoni by mitochondrial DNA cytochrome c oxidase subunit I or 16S ribosomal RNA sequences, and their external morphological traits were described for the first time. All six individuals have a slender and elongated body. When preflexion and flexion larval stages (10.24 mm notochord length, NL and 15.47 mm total length, TL, respectively), oval-shaped black melanophores were distributed in a row along the ventral side of the gut. However, when postflexion larval and juvenile stages (23.58~25.90 mm TL, and 29.20~31.26 mm TL, respectively), melanophores on the ventral side of the gut were disappeared, and dark spot-shaped melanophores appeared along the dorsal side of the gut in a single row. Also, from the postflexion larval stage (23.58 mm TL), two large black spots began to appear symmetrically on the caudal fin. Our results suggest that N. anderssoni may use coastal area as spawning and/or nursery ground unlike previous study (Kim and Park, 2002).

Antipathogenic Activity of Bacillus amyloliquefaciens Isolated from Korean Traditional Rice Wine (막걸리로부터 분리된 Bacillus amyloliquefaciens 균주의 항균 활성)

  • Sim, Hyunsu;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2016
  • The presence of bacterial strains showing antagonistic activity to common pathogens found in a variety of fermented foods in Korea was explored. A bacterium inhibiting the growth of pathogens such as Aspergillus terreus (KCTC6178), A. flavus (KCTC6984), Staphylococcus aureus (KCCM12214), Escherichia coli O157:H7 (KCCM40406), Bacillus cereus (KCTC1012), Cryptococcus neoformans (ATCC208821), Salmonella typhimurium (ATCC19430), and Listeria monocytogenes (KCTC3569) was isolated from Makgeolli, a Korean traditional rice wine. The strain showing high antipathogenic activity was identified as B. amyloliquefaciens based on the nucleotide sequence of the 16S ribosomal RNA gene. Compared with B. amyloliquefaciens KCTC1660, whose genome has been sequenced, the isolate exhibited significantly low activities of starch-degrading enzymes and high resistance to high temperature and low pH.

Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea

  • Kim, Won-Il;Cho, Won-Kyong;Kim, Su-Nam;Chu, Hyo-Sub;Ryu, Kyoung-Yul;Yun, Jong-Chul;Park, Chang-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.777-790
    • /
    • 2011
  • To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: ${\alpha}$-proteobacteria, ${\beta}$- proteobacteria, and ${\gamma}$-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

Life History and Systematic Studies of Pseudothrix borealis gen. et sp. nov. (=North Pacific Capsosiphon groenlandicus, Ulotrichaceae, Chlorophyta)

  • Hanic, Louis A.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.119-133
    • /
    • 2008
  • We cultured a tubular marine green alga, originally identified as Capsosiphon groenlandicus (J. Agardh) K.L. Vinogradova, from Amaknak Island, Alaska. The alga had an alternation of heteromorphic generations in which tubular monoecious fronds produced quadriflagellate zoospores and/or biflagellate isogametes. The gametes fused to produce cysts or Codiolum-like zygotes with long, tortuous stalks. Cysts and codiola produced 8-16 aplanospores, which germinated in situ to yield upright fronds. Fronds arising from both aplanospores and zoospores displayed a distinctive development in which non-septate colorless rhizoids from the base of the initially uniseriate, Ulothrix-like filament were transformed into septate uniseriate Ulothrix-like photosynthetic filaments. These transformed filaments then developed new basal non-septate rhizoids. This pattern of rhizoids becoming filaments, which then produced new rhizoids, was repeated to yield a tuft of up to 50 fronds. Periclinal and longitudinal divisions occurred in each filament, starting basally, until the mature tubular thallus was achieved. Pyrenoid ultrastructure revealed several short inward extensions of chloroplast lamellae, each of which was surrounded by pyrenoglobuli. Analysis of ribosomal SSU and ITS sequences placed this alga in the family Ulotrichaceae, order Ulotrichales, together with but as a distinct species from North Atlantic Capsosiphon groenlandicus. Analysis of a partial ITS sequence from authentic Capsosiphon fulvescens, the current name of the type of the genus Capsosiphon, indicated that neither our material nor C. groenlandicus belongs in that genus, and we propose a new genus, Pseudothrix, to accommodate both species. We propose P. borealis for the North Pacific entity formerly called C. groenlandicus and make the new combination P. groenlandica for the Atlantic species.

Management of Infections with Rapidly Growing Mycobacteria after Unexpected Complications of Skin and Subcutaneous Surgical Procedures

  • Lim, Jong-Min;Kim, Jong-Hwan;Yang, Ho-Jik
    • Archives of Plastic Surgery
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • Background : Infection caused by rapidly growing mycobacteria (RGM) is not uncommon, and the prevalence of RGM infection has been increasing. Clinical diagnosis is difficult because there are no characteristic clinical features. There is also no standard antibiotic regimen for treating RGM infection. A small series of patients with RGM infections was studied to examine their treatments and outcomes. Methods : A total of 5 patients who had developed postoperative infections from January 2009 to December 2010 were retrospectively reviewed. Patients were initially screened using a mycobacteria rapid screening test (polymerase chain reaction [PCR]-reverse blot hybridization assay). To confirm mycobacterial infection, specimens were cultured for nontuberculous mycobacteria and analyzed by 16 S ribosomal RNA and rpoB gene PCR. Results : The patients were treated with intravenous antibiotics during hospitalization, and oral antibiotics were administered after discharge. The mean duration of follow-up was 9 months, and all patients were completely cured of infection with a regimen of a combination of antibiotics plus surgical treatment. Although none of the patients developed recurrence, there were complications at the site of infection, including hypertrophic scarring, pigmentation, and disfigurement. Conclusions : Combination antibiotic therapy plus drainage of surgical abscesses appeared to be effective for the RGM infections seen in our patients. Although neither the exact dosage nor a standardized regimen has been firmly established, we propose that our treatment can provide an option for the management of rapidly growing mycobacterial infection.

Origin of lactic acid bacteria in mulkimchi fermentation

  • Hwang, Chung Eun;Haque, Md. Azizul;Hong, Su Young;Kim, Su Cheol;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.441-446
    • /
    • 2019
  • The assortment of endophytic lactic acid bacteria (LAB) in kimchi derives from its raw vegetables, which include Chinese cabbage, radish, welsh onion, onion, garlic, red pepper, and ginger. These vegetables were examined during mulkimchi fermentation using gene-specific multiplex polymerase chain reaction and 16S ribosomal RNA sequence analysis. Sixteen species from five LAB genera (Leuconostoc, Lactobacillus, Lactococcus, Pediococcus, and Weissella) appeared in the raw kimchi materials. Interestingly, nine LAB species were identified in mulkimchi on fermentation day 0 as follows: Leuconostoc carnosum, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc inhae, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis, and Weissella confusa. Seven additional LAB species were present in mulkimchi at fermentation day 9 as follows: Leuconostoc gasicomitatum, Leuconostoc kimchii, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus pentosus, Pediococcus pentosaceus, and Weissella koreensis. These species corresponded completely with the LAB in kimchi vegetables. Wei. confusa was the predominant LAB during early fermentation (pH 6.20 to 4.98 and acidity 0.20 to 0.64%), while Lac. sakei, Lac. plantarum, and Wei. koreensis became dominant later in fermentation (pH 4.98 to 3.88 and acidity 0.64 to 1.26%). These results collectively demonstrate that the LAB involved in mulkimchi fermentation originates from the raw vegetables examined.

Effects of dietary fiber levels on cecal microbiota composition in geese

  • Li, Yanpin;Yang, Haiming;Xu, Lei;Wang, Zhiyue;Zhao, Yue;Chen, Xiaoshuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1285-1290
    • /
    • 2018
  • Objective: This study shows the effects of dietary fiber levels on cecal microbiota composition in geese at day 70 according to pyrosequencing of the 16S ribosomal RNA gene. Methods: A total of 468 1-day-old healthy male Yangzhou goslings with similar body weight were randomly divided into 3 groups with 6 replicates per group and 26 geese per replicate. Geese were fed diets with fiber levels of 2.5% (low fiber level diet, Group I) and 6.1% (Group III) during days 1-70, respectively, or 4.3% for days 1-28 and 6.1% for days 29-70 (Group II). Results: Low fiber level diet decreased body weight, average daily gain during, increased lower feed conversation rate of geese during day 1 to 70 (p<0.05). Low fiber level diet decreased the total operational taxonomic units, Chao1 index and Shannon index, whereas increased the Simpson index of cecal microbiota in geese at day 70. Low fiber level diet decreased the relative abundance of Bacteroidetes, Firmicutes, Bacteroides, and Paraprevotella in cecum of geese at day 70. The similarity of cecal microbiota between low fiber level diet group and other groups was smaller. Conclusion: This study indicates that the low fiber level diet decreased diversity of microbiota, and relative abundance of some beneficial microbiota in cecum of geese at day 70, implying that the low fiber level diet has negative influence on performance by altering the diversity and population of cecal microbiota in geese.

Comparison of microbial communities in swine manure at various temperatures and storage times

  • Lim, Joung-Soo;Yang, Seung Hak;Kim, Bong-Soo;Lee, Eun Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1373-1380
    • /
    • 2018
  • Objective: This study was designed to investigate the effects of temperature and storage time on the evolution of bacterial communities in swine manure. Methods: Manure was stored at $-20^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $37^{\circ}C$ and sampled at 7-day intervals over 28 days of storage, for a total of 5 time points. To assess the bacterial species present, 16S ribosomal RNA gene sequences were analyzed using pyrosequencing. Results: After normalization, 113,934 sequence reads were obtained, with an average length of $466.6{\pm}4.4bp$. The diversity indices of the communities reduced as temperature and storage time increased, and the slopes of rarefaction curves decreased from the second week in samples stored at $-20^{\circ}C$ and $4^{\circ}C$. These results indicate that the richness of the bacterial community in the manure reduced as temperature and storage time increased. Firmicutes were the dominant phylum in all samples examined, ranging from 89.3% to 98.8% of total reads, followed by Actinobacteria, which accounted for 0.6% to 7.9%. A change in community composition was observed in samples stored at $37^{\circ}C$ during the first 7 days, indicating that temperature plays an important role in determining the microbiota of swine manure. Clostridium, Turicibacter, Streptococcus, and Lactobacillus within Firmicutes, and Corynebacterium within Actinobacteria were the most dominant genera in fresh manure and all stored samples. Conclusion: Based on our findings, we propose Clostridium as an indicator genus of swine manure decomposition in an anaerobic environment. The proportions of dominant genera changed in samples stored at $20^{\circ}C$ and $37^{\circ}C$ during the fourth week. Based on these results, it was concluded that the microbial communities of swine manure change rapidly as storage time and temperature increase.