• 제목/요약/키워드: RIG-I

검색결과 67건 처리시간 0.029초

Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

  • Yu Mi Baek;Soojin Yoon;Yeo Eun Hwang;Dong-Eun Kim
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.249-255
    • /
    • 2016
  • Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I.

Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism

  • Lee, Jeong Yoon;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.2014-2021
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to the genus Betacoronavirus and causes severe morbidity and mortality in humans especially when infected patients have underlying diseases such as chronic obstructive pulmonary disease (COPD). Previously, we demonstrated that MERS-CoV-encoded ORF8b strongly inhibits MDA5- and RIG-I-mediated induction of the interferon beta (IFN-β) promoter activities. Here, we report that ORF8b seemed to regulate MDA5 or RIG-I differentially as protein levels of MDA5 were significantly down-regulated while those of RIG-I were largely unperturbed. In addition, ORF8b seemed to efficiently suppress phosphorylation of IRF3 at the residues of 386 and 396 in cells transfected with RIG-I while total endogenous levels of IRF3 remained largely unchanged. Furthermore, ORF8b was able to inhibit all forms of RIG-I; full-length, RIG-I-1-734, and RIG-I-1-228, the last of which contains only the CARD domains. Taken together, it is tempting to postulate that ORF8b may interfere with the CARD-CARD interactions between RIG-I and MAVS. Further detailed analysis is required to delineate the mechanisms of how ORF8b inhibits the MDA5/RIG-I receptor signaling pathway.

Dengue Virus 2 NS2B Targets MAVS and IKKε to Evade the Antiviral Innate Immune Response

  • Ying Nie;Dongqing Deng;Lumin Mou;Qizhou Long;Jinzhi Chen;Jiahong Wu
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.600-606
    • /
    • 2023
  • Dengue virus (DENV) is a widespread arbovirus. To efficiently establish infection, DENV evolves multiple strategies to hijack the host innate immune response. Herein, we examined the inhibitory effects of DENV serotype 2 (DENV2) nonstructural proteins on RIG-I-directed antiviral immune response. We found that DENV2 NS2A, NS2B, NS4A, and NS4B significantly inhibited RIG-I-mediated IFN-β promoter activation. The roles of NS2B in RIG-I-directed antiviral immune response are unknown. Our study further showed that NS2B could dose-dependently suppress RIG-I/MAVS-induced activation of IFN-β promoter. Consistently, NS2B significantly decreased RIG-I- and MAVS-induced transcription of IFNB1, ISG15, and ISG56. Mechanistically, NS2B was found to interact with MAVS and IKKε to impair RIG-I-directed antiviral response. Our findings demonstrated a previously uncharacterized function of NS2B in RIG-I-mediated antiviral response, making it a promising drug target for anti-DENV treatments.

Induction of IFN-β through TLR-3- and RIG-I-Mediated Signaling Pathways in Canine Respiratory Epithelial Cells Infected with H3N2 Canine Influenza Virus

  • Park, Woo-Jung;Han, Sang-Hoon;Kim, Dong-Hwi;Song, Young-Jo;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.942-948
    • /
    • 2021
  • Canine influenza virus (CIV) induces acute respiratory disease in dogs. In this study, we aimed to determine the signaling pathways leading to the induction of IFN-β in a canine respiratory epithelial cell line (KU-CBE) infected with the H3N2 subtype of CIV. Small interfering RNAs (siRNAs) specific to pattern recognition receptors (PRRs) and transcription factors were used to block the IFN-β induction signals in H3N2 CIV-infected KU-CBE cells. Among the PRRs, only the TLR3 and RIG-I expression levels significantly (p < 0.001) increased in CIV-infected cells. Following transfection with siRNA specific to TLR3 (siTLR3) or RIG-I (siRIG-I), the mRNA expression levels of IFN-β significantly (p < 0.001) decreased, and the protein expression of IFN-β also decreased in infected cells. In addition, co-transfection with both siTLR3 and siRIG-I significantly reduced IRF3 (p < 0.001) and IFN-β (p < 0.001) mRNA levels. Moreover, the protein concentration of IFN-β was significantly (p < 0.01) lower in cells co-transfected with both siTLR3 and siRIG-I than in cells transfected with either siTLR3 or siRIG-I alone. Also, the antiviral protein MX1 was only expressed in KU-CBE cells infected with CIV or treated with IFN-β or IFN-α. Thus, we speculate that IFN-β further induces MX1 expression, which might suppress CIV replication. Taken together, these data indicate that TLR3 and RIG-I synergistically induce IFN-β expression via the activation of IRF3, and the produced IFN-β further induces the production of MX1, which would suppress CIV replication in CIV-infected cells.

Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I

  • Kang, Sangmin;Choi, Changsun;Choi, Insoo;Han, Kwi-Nam;Roh, Seong Woon;Choi, Jongsun;Kwon, Joseph;Park, Mi-Kyung;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1554-1562
    • /
    • 2018
  • The type I interferons (IFNs) play a vital role in activation of innate immunity in response to viral infection. Accordingly, viruses have evolved to employ various survival strategies to evade innate immune responses induced by type I IFNs. For example, hepatitis E virus (HEV) encoded papain-like cysteine protease (PCP) has been shown to inhibit IFN activation signaling by suppressing K63-linked de-ubiquitination of retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1), thus effectively inhibiting down-stream activation of IFN signaling. In the present study, we demonstrated that HEV inhibits polyinosinic-polycytidylic acid (poly(I:C))-induced $IFN-{\beta}$ transcriptional induction. Moreover, by using reporter assay with individual HEV-encoded gene, we showed that HEV methyltransferase (MeT), a non-structural protein, significantly decreases RIG-I-induced $IFN-{\beta}$ induction and $NF-{\kappa}B$ signaling activities in a dose-dependent manner. Taken together, we report here that MeT, along with PCP, is responsible for the inhibition of RIG-I-induced activation of type I IFNs, expanding the list of HEV-encoded antagonists of the host innate immunity.

고속충돌시험기 개발 및 부재의 충돌특성 실험에 관한 연구 (I) (A Study on the Development of Test Rig for High Speed Frontal Crash and Test of Members ($\textrm{I}$))

  • 강신유;장인배;김헌영;정규진;박경환
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.119-126
    • /
    • 2000
  • In this paper. a simple high-speed crash test rig for members of vehicle was developed for the improvement of crashworthiness of vehicle's side rail. The cart hanging the specimen is accelerated up to 35 mph by the force of freely dropping weight and 1:3 accelerating pulleys. The cart with shock absorbers travels on the rail roads, so it does not transfer any additional vibration to the specimen. To measure the test results, two types of accelerator are considered. the one is a strain gage type and the other is a piezo type. The test rig is rated good to test the specimen like a side rail of vehicle as developing the vehicle's structures in the early design stage.

  • PDF

Characteristic responses of critical current in REBCO coated conductor tapes under tensile/compressive bending strains at 77 K

  • Diaz, Mark Angelo;Shin, Hyung Seop;Lee, Jae-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.31-35
    • /
    • 2018
  • When REBCO coated conductors (CCs) are applied to superconducting devices such as coils and magnets, they are subjected to deformation in various modes such as compression/tension bending, uniaxial/transverse tension and torsion. Despite outstanding performances by REBCO CC tapes, their electromechanical properties have been evaluated primarily under uniaxial tension, therefore data about the critical current ($I_c$) response in the compressive strain region are lacking. In this study, the characteristic responses of $I_c$ in REBCO CC tapes under bending strains in the range from tensile to compressive were evaluated. The springboard bending beam was used, wherein the CC tape sample was soldered onto the surface of the springboard. A Goldacker-type bending test rig, which lacks a support holding the sample during testing, was used as a comparator. Degradation in $I_c$ behaviors, including strain sensitivity, in differently processed REBCO CC tapes were examined based on the test rig used.

Regulation of MDA5-MAVS Antiviral Signaling Axis by TRIM25 through TRAF6-Mediated NF-κB Activation

  • Lee, Na-Rae;Kim, Hye-In;Choi, Myung-Soo;Yi, Chae-Min;Inn, Kyung-Soo
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.759-764
    • /
    • 2015
  • Tripartite motif protein 25 (TRIM25), mediates K63-linked polyubiquitination of Retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. Here, we demonstrate that TRIM25 is required for melanoma differentiation-associated gene 5 (MDA5) and MAVS mediated activation of NF-${\kappa}B$ and interferon production. TRIM25 is required for the full activation of NF-${\kappa}B$ at the downstream of MAVS, while it is not involved in IRF3 nuclear translocation. Mechanical studies showed that TRIM25 is involved in TRAF6-mediated NF-${\kappa}B$ activation. These collectively indicate that TRIM25 plays an additional role in RIG-I/MDA5 signaling other than RIG-I ubiquitination via activation of NF-${\kappa}B$.

Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway

  • Ngan, Nguyen Thi Thuy;Kim, Seong-Jun;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1665-1674
    • /
    • 2019
  • Zika virus (ZIKV) is a mosquito-transmitted, emerging Flavivirus that causes Guillain-$Barr{\acute{e}}$ syndrome and microcephaly in adults and fetuses, respectively. Since ZIKV was first isolated in 1947, severe outbreaks have occurred at various places worldwide, including Yap Island in 2007, French Polynesia in 2013, and Brazil in 2015. Although incidences of ZIKV infection and dissemination have drastically increased, the mechanisms underlying the pathogenesis of ZIKV have not been sufficiently studied. In addition, despite extensive research, the exact roles of individual ZIKV genes in the viral evasion of the host innate immune responses remain elusive. Besides, it is still possible that more than one ZIKV-encoded protein may negatively affect type I interferon (IFN) induction. Hence, in this study, we aimed to determine the modulations of the IFN promoter activity, induced by the MDA5/RIG-I signaling pathway, by over-expressing individual ZIKV genes. Our results show that two nonstructural proteins, NS2A and NS4A, significantly down-regulated the promoter activity of IFN-${\beta}$ by inhibiting multiple signaling molecules involved in the activation of IFN-${\beta}$. Interestingly, while NS2A suppressed both full-length and constitutively active RIG-I, NS4A had inhibitory activity only on full-length RIG-I. In addition, while NS2A inhibited all forms of IRF3 (full-length, regulatory domain-deficient, and constitutively active), NS4A could not inhibit constitutively active IRF3-5D. Taken together, our results showed that NS2A and NS4A play major roles as antagonists of MDA5/RIG-I-mediated IFN-${\beta}$ induction and more importantly, these two viral proteins seem to inhibit induction of the type I IFN responses in differential mechanisms. We believe this study expands our understanding regarding the mechanisms via which ZIKV controls the innate immune responses in cells and may pave the way to development of ZIKV-specific therapeutics.