• Title/Summary/Keyword: RHO gene

Search Result 122, Processing Time 0.021 seconds

Molecular weight Control of Polyhydroxybutyrate (PHB) in Recombinant Escherichia coli (재조합 대장균에서의 Polyhydroxybutyrate (PHB)의 분자량 조절)

  • 심상준;안토니신스키
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.96-100
    • /
    • 1998
  • Two promoters (trc and P$\rho$) were inserted in PHA operon derived from Alcaligenes eutrophus to obtain high chain molecules of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Newly designed PHA operon was used to control the gene expressions of hydroxybutyric CoA and PHA polymerization, separately. Plasmids containing new synthetic operon was transformed into E. coli DH5$\alpha$ and analyzed for PHB production. Without induction of the PHA biosynthetic operon, PHA synthase which has low activity might supply low concentration of initiator during the polymerization reaction, resulting very high molecular weight of polymer. An increase of PHB average molecular weight was observed with decreased IPTG (isopropyl $\beta$ -Dithiogalactosidase) concentration. When no IPTG was added to the culture of E. coli DH5$\alpha$ /$\rho$ SJS1 which contained two promoters in PHA operon, high chain polymer having an average molecular weight of $2.5{\times}10^7$ was achieved. Analysis of the enzyme activities of PHA biosynthetic enzymes suggests that PHA synthase, the enzyme responsible for polymerizing 3-hydroxybutyric CoA, controls the molecular weight of PHB produced in vivo.

  • PDF

Purification and Characterization of Acetyl Xylan Esterase from Escherichia coli Cells Harboring the Recombinant Plasmid pKMG6 (제조합 균주 Escherochia coli가 생산하는 Bacillus stearothermophilus Acetyl Xylan Esterase의 정제 및 특성)

  • 김인숙;이철우;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.507-514
    • /
    • 1994
  • Acetyl xylan esterase was produced by E. coli HB101 harboring a recombinant plasmid pKMG6 which contained the estI gene of Bacillus stearothermophilus. The maximum production was observed when the E. coli strain was grown at 37$\circC for 12 hours in the medium containing 0.5% acetyl xylan, 1.0% tryptons, 1.0% sodium chloride, and 0.5% yeast extract. The esterase produced was purified to homogeneity using a combination of ammonium sulfate fractionation, DEAE Sepharose CL-6B ion exchange chromatography and Sephacryl S-200 gel filtration. The native enzyme had an apparent molecular mass of 60 kd and was composed of two identical subunits of 29 kd. The N-terminal amino acid sequence of the polypeptide was Ala-X-Leu-Gln- Ile-Gln-Phe-X-X-Gln. The acetyl esterase displayed a pH optimum of 6.5 and a temperature opti- mum of 45$\circC. The heavy metal ions such as Ag$^{++}$, Hg$^{++}$ and Cu$^{++}$ inhibited nearly completely the activity of the esterase, and no specific metal ion was found to be required for the enzyme activity. The enzyme readily cleaved MAS, $\beta$-D-glucose pentaacetate, $\alpha$-naphthyl acetate, $\rho$-nitrophenyl acetate as well as acetyl xylan, but had no activity on $\rho$-nitrophenyl propionate, $\beta$-nitrophenyl butyrate or $\beta$-nitrophenyl valerate. The Km and Vmax values for MAS were 2.87 mM and 11.55 $\mu$mole/min, respectively. Synergistic behavior was demonstrated with a combination of xylanase and esterase from B. stearothermophilus in hydrolyzing acetyl xylan.

  • PDF

Ectopic expression of Bcl-2 or Bcl-xL suppresses p-fluorophenylalanine-induced apoptosis through blocking mitochondria-dependent caspase cascade in human Jurkat T cells (Jurkat T 세포에 있어서 ρ-fluorophenylalanine에 의해 유도되는 세포자살의 Bcl-2 및 Bcl-xL에 의한 저해 기전)

  • Han, Kyu-Hyun;Oh, Hyun-Ji;Jun, Do-Youn;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.118-127
    • /
    • 2003
  • $\rho$-Fluorophenylalanine (FPA), a phenylalanine analog, is able to induce apoptotic cell death of human acute leukemia Jurkat T cells. To better understand the mechanism by which FPA induces apoptotic cell death, the effect of ectopic expression of antiapoptotic proteins, Bcl-2 and Bcl-xL, on FPA-induced apoptosis was investigated by employing lurkat T cells transfected with Bcl-2 gene (JT/Bcl-2) or Bcl-xL gene (1/Bcl-xL) and Jurkat T cells transfected with vector (JT/Neo or J/Neo). When Jurkat T cells, JT/Neo or J/Neo, were exposed to FPA at concentrations ranging from 0.63 to 5.0 mM, the cell viability determined by MTT assay declined in a dose-dependent manner. In addition, apoptotic DNA fragmentation along with several apoptotic events such as caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, caspase-9 activation, caspase-3 activation, and degradation of PARP was induced. However, the FPA-induced cytotoxic effect, activation of caspase-8, and cleavage of Bid were significantly abrogated by ectopic expression of Bcl-2 or Bcl-xL. At the same time, there was marked reduction in the level of cytochrome c release from mitorhondria, caspase-9 activation, caspase-3 activation, and degradation of PARP. These results indicate that caspase-8 activation, Bid cleavage, and mitochondrial cytochrome c release with subsequent activation of the caspase cascade are negatively regulated by Bcl-2 or Bcl-xL, and are thus required for FPA-induced apoptosis in Jurkat T cells

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

Wound Healing-Enhancing and Anti-inflammatory effects of five Korean Traditional Herbal Medicines, Jeong Yang-dan (정양단(精養丹)의 항염증, 상처 치유효능에 대한 연구)

  • Cho, Ga-Young;Rho, Ho-Sik;Kim, Eun-Joo;Moon, Eun-Jeong;Kim, Ji-Seong;Park, Hye-Yoon;Kim, Duck-Hee;Kim, Han-Gon
    • Journal of the Korean Institute of Oriental Medical Informatics
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2009
  • Objectives : The aim of the present study is to evaluate the wound healing-enhancing and anti-inflammatory effects of Pinus densiflora, Cornus officinalis, Zingiber officinale, Ganoderma japonicum and Scutellaria baikalensison human keratinocyte, HaCaT cells. Methods : We adopted in vitro wound healing assay to measure the proliferation-and migration-enhancing effects in HaCaT cells. The expressions of cytokine genes were measured in HaCaT cells using real-time PCR analysis. Results : The extracts of Pinus densiflora, Cornus officinalis, Zingiber officinale, Ganoderma japonicum and Scutellaria baikalensis enhanced the proliferation and migration of HaCaTcells. The expression of keratinocyte growth factor receptor(FGFR2-IIIb) gene was also induced. The extracts inhibited iNOS, IL-$1{\beta}$ and TNF-$\alpha$ gene expression. Conclusions : The extract of Pinus densiflora, Cornus officinalis, Zingiber officinale, Ganoderma japonicum and Scutellaria baikalensis has wound healing-enhancing effects and anti-inflammatory effects.

  • PDF

Agrobacterium tumefaciens-mediated Transformation in Colletotrichum falcatum and C. acutatum

  • Maruthachalam, Karunakaran;Nair, Vijayan;Rho, Hee-Sool;Choi, Jae-Hyuk;Kim, Soon-Ok;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.234-241
    • /
    • 2008
  • Agrobacterum tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with co-cultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.

Optimal Production Conditions of Streptomyces griseus Trypsin (SGT) in Streptomyces lividans

  • Koo, Bon-Joon;Kim, Joung-Mee;Byun, Si-Myong;Hong, Soon-Kwang
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.86-91
    • /
    • 1999
  • The sprT gene encoding Streptomyces griseus trypsin (SGT) was introduced into Streptomyces lividans TK24 and Streptomyces lividans 1326 to study which strain would be better to overexpress the extracellular proteinase. Various media with different compositions were also used to maximize the productivity of SGT in heterologous hosts. The SGT productivity was best when the transformants of S. lividans TK24 and 1326 were cultivated in R2YE medium, and their relative trypsin activity of the culture broth measured with an artificial chromogenic substrate, N-${\alpha}$-benzoyl-DL-arginine-${\rho}$-nitroanilide, were 382 units/ml and 221 units/ml, respectively. They produced high levels of SGT in GYE medium but relatively lower than those in R2YE medium, and negligible amount of SGT was produced in Ferm, RASF, LIVID, and NDSK media. Considering non-SGT associated activity in Pronase powder, it was estimated that the transformant of S. lividans TK24 can produce SGT in R2YE 3.5 times more than the amount by S. griseus 10137 from which the sprT gene had been originated. The growth of S. lividans reached the maximum level of cell mass at 5 d of culture, but SGT production started in the stationary phase of cell growth and kept increasing until the ninth day of culture in R2YE medium, but in GYE media the productivity reached at the maximum level at 7 d of cultivation.

  • PDF

Oncomodulin/Truncated Protamine-Mediated Nogo-66 Receptor Small Interference RNA Delivery Promotes Axon Regeneration in Retinal Ganglion Cells

  • Cui, Zhili;Kang, Jun;Hu, Dan;Zhou, Jian;Wang, Yusheng
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.613-619
    • /
    • 2014
  • The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ~12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.

Study no the Antidiabetic Effect of Amomum xanthioides Extract (사인의 항당뇨 작용에 관한 연구)

  • Lee, Ji-Hyun;Zhao, Zheng-Lim;Cho, Nam-Pyo;Park, Byung-Hyun;Kwon, Kang-Beom;Rho, Hye-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.468-473
    • /
    • 2007
  • The antidiabetic effect of Amomum xanthioides(A. xanthioides) extract was investigated. Alloxan caused the hyperglycemia and hypoinsulinemia by a selective destruction of pancreatic ${\beta}$-cell. Pretreatment of mouse with A. xanthiodies extract for 2 days prior to alloxan administration completely protected hyperglycemia induced by alloxan. In addition, administration of A. xanthioides extract to alloxan-induced diabetic mouse significantly abolished hyperglycemia, hypoinsulinemia, and, the reduction of size and number of insulin-secreting cells induced by alloxan. Administration of A. xanthioides extract to alloxan-induced diabetic mouse rapidly increased pancreatic Reg gene expression to 7 days, and then decreased. In alloxan-diabetic mouse. Reg gene expression was increased at 3 days after alloxan injection, and sustained until 24 days. The present results indicate that A. xanthioides extract contains potentially effective components exhibiting both protection and treatment of alloxan-induced diabetes. These results suggested that the antidiabetic effect of A. xanthoides extract may be mediated through the regeneration of pancreatic ${\beta}$-cells.

Genes Expressed During Fruiting Body Formation of Agrocybe cylindracea

  • Shim, Sung-Mi;Kim, Sang-Beom;Kim, Hey-Young;Rho, Hyun-Su;Lee, Hyun-Sook;Lee, Min-Woong;Lee, U-Youn;Im, Kyung-Hoan;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.209-213
    • /
    • 2006
  • Agrocybe cylindracea, an edible mushroom belonging to Bolbitiaceae, Agaricales, is widely used as invaluable medicinal material in the oriental countries. This study was initiated to find the genes expressed during the fruiting body formation of A. cylindracea. The cDNAs expressed differentially during fruiting body morphogenesis of A. cylindracea were isolated through subtractive hybridization between vegetative mycelia and fruiting bodies. The cDNAs expressed in the fruiting body morphogenesis of A. cylindracea were cloned and twenty genes were identified. Eleven were homologous to genes of known functions, three were homologous to genes in other organism without any function known. Six were completely novel genes specific to A. cylindracea so far examined. Some genes with known functions were a pleurotolysin, a self-assembling poreforming cytolysins; Aa-Pril and Pir2p, specifically induced genes during fruiting initiation of other mushroom, Agrocybe aegerita; an amino acid permease; a cytochrome P450; a MADS-box gene; a peptidylprolyl isomerase; and a serine proteinase. For other clones, no clear function was annotated so far. We believe the first report of the differentially expressed genes in fruiting process of A. cylindracea will be great helps for further research.