Agrobacterium tumefaciens-mediated Transformation in Colletotrichum falcatum and C. acutatum

  • Maruthachalam, Karunakaran (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University) ;
  • Nair, Vijayan (Biotechnology Laboratory, Sugarcane Breeding Institute) ;
  • Rho, Hee-Sool (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University) ;
  • Choi, Jae-Hyuk (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University) ;
  • Kim, Soon-Ok (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University)
  • Published : 2008.02.29

Abstract

Agrobacterum tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with co-cultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.

Keywords

References

  1. Abuodeh, R. O., M. J. Orbach, M. A. Mandel, A. Das, and J. N. Galgiani. 2000. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis. 181: 2106-2110 https://doi.org/10.1086/315525
  2. Alexander, K. 1992. Current status of red rot disease of sugarcane in Tamil Nadu. South Indian Sugarcane Sugarcane Technol. Assoc. 61-65
  3. Balhadere, P. V., A. J. Foster, and N. J. Talbot. 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. Plant-Microbe Interact. 12: 129-142 https://doi.org/10.1094/MPMI.1999.12.2.129
  4. Bundock, P., A. Dendulkras, A. Beijersbergen, and P. J. J. Hooykaas. 1995. Transkingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206-3214
  5. Bundock, P., K. Mroczek, A. A. Winkler, H.Y. Steensma, and P. J. J. Hooykaas. 1999. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261: 115-121 https://doi.org/10.1007/s004380050948
  6. Carroll, A., J. A. Sweigard, and B. Valent. 1994. Improved vectors for selecting resistance to hygromycin. Fungal Genet. Newslett. 41: 22
  7. Chen, X., M. Stone, C. Schlagnhaufer, and C. P. Romaine. 2000. A fruiting body tissue method for efficient Agrobacteriummediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513 https://doi.org/10.1128/AEM.66.10.4510-4513.2000
  8. Cho, J. Y., G. J. Choi, S. W. Lee, K. S. Jang, H. K. Lim, C. H. Lim, S. O. Lee, K. Y. Cho, and J. C. Kim. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16: 280-285
  9. Chung, K. R., T. Shilts, W. Li, and L. W. Timmer. 2002. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 213: 33-39 https://doi.org/10.1111/j.1574-6968.2002.tb11282.x
  10. de Groot, M. J. A., P. Bundock, P. J. J. Hooykaas, and A. G. M. Beijersbergen. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842 https://doi.org/10.1038/nbt0998-839
  11. Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35: 211-234 https://doi.org/10.1146/annurev.phyto.35.1.211
  12. Flowers, J. L. and L. J. Vaillancourt. 2005. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola. Curr. Genet. 48: 380-388 https://doi.org/10.1007/s00294-005-0034-1
  13. Fox, D. S., G. M. Cox, and J. Heitman. 2003. Phospholipidbinding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot. Cell 2: 1025-1035 https://doi.org/10.1128/EC.2.5.1025-1035.2003
  14. Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 223-256 https://doi.org/10.1146/annurev.arplant.51.1.223
  15. Hooykaas, P. J. J., C. Roobol, and R. A. Schilperoort. 1979. Regulation of the transfer of Ti plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110: 99-109 https://doi.org/10.1099/00221287-110-1-99
  16. Horowitz, S., S. Freeman, and A. Sharon. 2002. Use of green fluorescent protein-transgenic strains to study pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum. Phytopathology 92: 743-749 https://doi.org/10.1094/PHYTO.2002.92.7.743
  17. Jeon, J., S.-Y. Park, M.-H. Chi, J. Choi, J. Park, H.-S. Rho, S. Kim, J. Goh, S. Yoo, et al. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39: 561-565 https://doi.org/10.1038/ng2002
  18. Khang, C. H., S. Y. Park, Y. H. Lee, and S. C. Kang. 2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet. Biol. 42: 483-492 https://doi.org/10.1016/j.fgb.2005.03.004
  19. Kunik, T., T. Tzfira, Y. Kapulnik, Y. Gafni, C. Dingwall, and V. Citovsky. 2001. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98: 1871-1876
  20. Lee, S. H., H. Y. Kim, S. Y. Hong, Y. W. Lee, and S. H. Yun. 2006. A large genomic deletion in Gibberella zeae causes a defect in the production of two polyketides but not in sexual development or virulence. Plant Pathol. J. 22: 215-221 https://doi.org/10.5423/PPJ.2006.22.3.215
  21. Liu, Y. G., N. Mitsukawa, T. Oosumi, and R. F. Whittier. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463 https://doi.org/10.1046/j.1365-313X.1995.08030457.x
  22. Meyer, V., D. Mueller, T. Strowig, and U. Stahl. 2003. Comparison of different transformation methods for Aspergillus giganteus. Curr. Genet. 43: 371-377 https://doi.org/10.1007/s00294-003-0406-3
  23. Michielse, C. B., P. J. J. Hooykaas, C. A. M. J. J. van den Hondel, and A. F. J. Ram. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1-17 https://doi.org/10.1007/s00294-005-0578-0
  24. Mullins, E. D., X. Chen, P. Romaine, R. Raina, D. M. Geiser, and S. Kang. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91: 173-180 https://doi.org/10.1094/PHYTO.2001.91.2.173
  25. Nierman, W. C., A. Pain, M. J. Anderson, J. R. Wortman, H. S. Kim, J. Arroyo, M. Berriman, K. Abe, D. B. Archer, et al. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151-1156 https://doi.org/10.1038/nature04332
  26. O'Connell, R., C. Herbert, S. Sreenivasaprasad, M. Khatib, M. T. Esquerre-Tugaye, and B. Dumas. 2004. A novel Arabidopsis- Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol. Plant-Microbe Interact. 17: 272-282 https://doi.org/10.1094/MPMI.2004.17.3.272
  27. Park, J., H. Kim, S. Kim, S. Kong, J. Park, S. Kim, H.-Y. Han, B. Park, K. Jung, and Y.-H. Lee. 2006. A comparative genomewide analysis of GATA transcription factors in fungi. Genomics & Informatics 4: 156-169
  28. Perfect, S. E., H. B. Hughes, R. J. O'Connell, and J. R. Green. 1999. Colletotrichum - A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27: 186-198 https://doi.org/10.1006/fgbi.1999.1143
  29. Redman, R. S., J. C. Ranson, and R. J. Rodriguez. 1999. Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol. Plant-Microbe Interact. 12: 969-975 https://doi.org/10.1094/MPMI.1999.12.11.969
  30. Rho, H. S., S. Kang, and Y. H. Lee. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12: 407-411
  31. Robinson, M. and A. Sharon. 1999. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia. Curr. Genet. 36: 98-104 https://doi.org/10.1007/s002940050478
  32. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  33. Sweigard, J. A., A. M. Carroll, L. Farrall, F. G. Chumley, and B. Valent. 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact. 11: 404-412 https://doi.org/10.1094/MPMI.1998.11.5.404
  34. Takahara, H., G. Tsuji, Y. Kubo, M. Yamamoto, K. Toyoda, Y. Inagaki, Y. Ichinose, and T. Shiraishi. 2004. Agrobacterium tumefaciens-mediated transformation as tool for random mutagenesis of Colletotrichum trifolii. J. Gen. Plant Pathol. 70: 93-96 https://doi.org/10.1007/s10327-003-0099-y
  35. Tanaka, A., H. Shiotani, M. Yamamoto, and T. Tsuge. 1999. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interact. 12: 691-702 https://doi.org/10.1094/MPMI.1999.12.8.691
  36. Thon, M. R., E. M. Nuckles, and L. J. Vaillancourt. 2000. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol. Plant Microbe Interact. 13: 1356-1365 https://doi.org/10.1094/MPMI.2000.13.12.1356
  37. Tsuji, G., N. Fujihara, C. Hirose, S. Tsuge, T. Shiraishi, and Y. Kubo. 2003. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J. Gen. Plant Pathol. 69: 230-239
  38. Xu, W., C. Zhu, and B. Zhu. 2005. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J. Microbiol. Biotechnol. 15: 683-688