• Title/Summary/Keyword: RGRT

Search Result 10, Processing Time 0.033 seconds

The variability of tumor motion and respiration pattern in Stereotactic Body RadioTherapy(SBRT) for Lung cancer patients (RPM SystemTM을 이용한 호흡 관찰의 유용성 평가)

  • Park, hyun jun;Bae, sun myeong;Baek, Geum Mun;Kang, tae young;Seo, Dong Rin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2016
  • Purpose : The purpose of this study is to evaluate the variability of tumor motion and respiration pattern in lung cancer patients undergoing Stereotactic Body RadioTherapy(SBRT) by using On-Board imager (OBI) system and Real-time Position Management (RPM) System. Materials and Methods : This study population consisted of 60 lung cancer patient treated with stereotactic body radiotherapy (48 Gy / 4 fractions). Of these, 30 were treated with gating (group 1) and 30 without gating(group2): typically the patients whose tumors showed three-dimensional respiratory motion > 10 mm were selected for gating. 4-dimensional Computed Tomography (4DCT). Cone Beam CT (CBCT) and Fluoroscopy images were used to measure the tumor motion. RPM system was used to evaluate the variability of respiration pattern on SBRT for group1. Results : The mean difference of tumor motion among 4DCT, CBCT and Fluoroscopy images in the cranio-caudal direction was 2.3 mm in group 1, 2. The maximum difference was 12.5 mm in the group 1 and 8.5 mm in group 2. The number of treatment fractions that patient's respiration pattern was within Upper-Lower threshold on SBRT in group 2 was 31 fractions. A patient who exhibited the most unstable pattern exceeded 108 times in a fraction Conclusion : Although many patients in group 1 and 2 kept the reproducibility of tumor motion within 5 mm during their treatment, some patients exhibited variability of tumor motion in the CBCT and Fluoroscopy images. It was possible to improve the accuracy of dose delivery in SBRT without gating for lung cancer patient by using RPM system.

  • PDF

Evaluation of the Accuracy and usability of Trigger mode in Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 Trigger mode 투시영상 획득 시 호흡 속도에 따른 정확성 평가 - Phantom Study)

  • Park, je wan;Kim, min su;Um, ki cheon;Choi, seong hoon;Song, heung kwon;Yoon, in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.25-33
    • /
    • 2021
  • Purpose : The purpose of this study is to evaluate the accuracy and usefulness of the Trigger mode for the Respiratory Gated Radiation Therapy (RGRT) Materials and methods : A QUASAR respiratory phantom that inserted a 3 mm fiducial marker (a gold marker) was used to estimate the accuracy of the Trigger mode. And the 20 bpm was used as reference respiration rate in this study. The marker that placed at the center of the phantom was contoured, and the lower threshold of a gating window was fixed at 2.0 mm using an OBI with Truebeam STxTM. The upper threshold was measured every 0.5 mm from 1.0 mm to 3.0 mm. The respiration rates were changed every 10 bpm from 10 bpm to 60 bpm. We repeatedly measured five times to check the error rate of the trigger mode in the same condition. Result : The differences of a distance from a peak phase to upper threshold, 1.0 to 3.0 mm at a 20 bpm as a reference for 3 days in a row were 0.68±0.05 mm, 0.91±0.03 mm, 1.23±0.03 mm, 1.42±0.04 mm, and 1.66±0.06 mm, respectively. Measurement result of changes in respiratory rate compared to baseline respiratory rate in maximum absolute difference. The coefficient of determination (R2) to estimate the correlation between the respiration velocity and variation of absolute difference was on average 0.838, 0.887, 0.770, 0.850, and 0.906. The p-values of all the variables were below 0.05. Conclusion : Using Trigger mode during respiratory gated radiation therapy (RGRT), accuracy and usefulness of trigger mode at reference breathing rate were confirmed. However, inaccuracies depending on the rate of breathing it could be uncertain in case of respiration rate is faster than 20 bpm as a standard respiration rate compared to slower than 20 bpm. Consequently, when conducting a RGRT using the trigger mode, real time monitoring is required with well educated respiration.

Evaluation of the Usefulness of the Respiratory Guidance System in the Respiratory Gating Radiation Therapy (호흡동조 방사선치료 시 호흡유도시스템의 유용성 평가)

  • Lee, Yeong-Cheol;Kim, Sun-Myung;Do, Gyeong-Min;Park, Geun-Yong;Kim, Gun-Oh;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.167-174
    • /
    • 2012
  • Purpose: The respiration is one of the most important factors in respiratory gating radiation therapy (RGRT). We have developed an unique respiratory guidance system using an audio-visual system in order to support and stabilize individual patient's respiration and evaluated the usefulness of this system. Materials and Methods: Seven patients received the RGRT at our clinic from June 2011 to April 2012. After breathing exercise with the audio-visual system, we measured their spontaneous respiration and their respiration with the audio-visual system respectively. With the measured data, we yielded standard deviations by the superficial contents of respiratory cycles and functions, and analyzed them to examine changes in their breathing before and after the therapy. Results: The PTP (peak to peak) of the standard deviations of the free breathing, the audio guidance system, and the respiratory guidance system were 0.343, 0.148, and 0.078 respectively. The respiratory cycles were 0.645, 0.345, and 0.171 respectively and the superficial contents of the respiratory functions were 2.591, 1.008, and 0.877 respectively. The average values of the differences in the standard deviations among the whole patients at the CT room and therapy room were 0.425 for the PTP, 1.566 for the respiratory cycles, and 3.671 for the respiratory superficial contents. As for the standard deviations before and after the application of the PTP respiratory guidance system, that of the PTP was 0.265, that of the respiratory cycles was 0.474, and that of the respiratory superficial contents. The results of t-test of the values before and after free breathing and the audio-visual guidance system showed that the P-value of the PTP was 0.035, that of the cycles 0.009, and that of the respiratory superficial contents 0.010. Conclusion: The respiratory control could be one of the most important factors in the RGRT which determines the success or failure of a treatment. We were able to get more stable breathing with the audio-visual respiratory guidance system than free breathing or breathing with auditory guidance alone. In particular, the above system was excellent at the reproduction of respiratory cycles in care units. Such a system enables to reduce time due to unstable breathing and to perform more precise and detailed treatment.

  • PDF

Consideration of the Accuracy by Variation of Respiration in Real-time Position Management Respiratory Gating System (호흡동조 방사선치료에 사용되고 있는 RPM (Real-time Position Management) Respiratory Gating System의 호흡변화에 따른 정확성에 대한 고찰)

  • Na, Jun Young;Kang, Tae Young;Baek, Geum Mun;Kwon, Gyeong Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Purpose: Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Materials and Methods: Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30~70% gating) in Asan Medical Center. Results: It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. Conclusion: The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy.

  • PDF

Evaluation of Dose According to the Volume and Respiratory Range during SBRT in Lung Cancer (폐암의 정위적 체부 방사선치료 시 체적 설정과 호흡주기에 따른 선량평가)

  • Lee, Deuk-Hee;Park, Eun-Tae;Kim, Jung-Hoon;Kang, Se-Seik
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.391-397
    • /
    • 2016
  • Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

Development and usability evaluation of portable respiration training device which is applied to personal respiration cycle (개인고유의 호흡주기를 적용한 휴대형 호흡 연습장치 개발 및 유용성 평가)

  • Park, Mun-kyu;Lee, Dong-han;Cho, Yu-ra;Hwang, Seon-bung;Park, Seung-woo;Lee, Dong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.833-835
    • /
    • 2014
  • On this study, we have developed respiratory training system to improve stability of respiration, one of the most important factors of Respiratory Gated Radiation Therapy, RGRT. Respiratory training system that we developed was applied to personal respiratory cycle so that it could provide comfortable respiratory triggering to patients. To give sufficient time for practice, we used modular portable device to practice easily and to be undetered by time and place. We have intended to improve efficiency and accuracy by providing it to patients. We are now planning to conduct experiment of 10 peoples to find out stability, degree of durability betterment and regularity of respiration when patients are using respiratory training system. There are three kinds of breathing style. First is free breathing that Individual patients can breathe freely. Second is guide breathing that patients apply to personal respiration cycle through the guiding sight and hearing program. Third is prediction breathing that patients breathe after respiratory training without guiding sight and hearing program. By using these 3 data of respiration method, we have evaluated usability of respiratory training system by quantitatively analyzing respiration period, amplitude and area's variation.

  • PDF

Evaluation of usefulness of the Gated Cone-beam CT in Respiratory Gated SBRT (호흡동조 정위체부방사선치료에서 Gated Cone-beam CT의 유용성 평가)

  • Hong sung yun;Lee chung hwan;Park je wan;Song heung kwon;Yoon in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.61-72
    • /
    • 2022
  • Purpose: Conventional CBCT(Cone-beam Computed-tomography) caused an error in the target volume due to organ movement in the area affected by respiratory movement. The purpose of this paper is to evaluate the usefulness of accuracy and time spent using the Gated CBCT function, which reduces errors when performing RGRT(respiratory gated radiation therapy), and to examine the appropriateness of phase. Materials and methods: To evaluate the usefulness of Gated CBCT, the QUASARTM respiratory motion phantom was used in the Truebeam STxTM. Using lead marker inserts, Gated CBCT was scaned 5 times for every 20~80% phase, 30~70% phase, and 40~60% phase to measure the blurring length of the lead marker, and the distance the lead marker moves from the top phase to the end of the phase was measured 5 times. Using Cedar Solid Tumor Inserts, 4DCT was scanned for every phase, 20-80%, 30-70%, and 40-60%, and the target volume was contoured and the length was measured five times in the axial direction (S-I direction). Result: In Gated CBCT scaned using lead marker inserts, the axial moving distance of the lead marker on average was measured to be 4.46cm in the full phase, 3.11cm in the 20-80% phase, 1.94cm in the 30-70% phase, 0.90cm in the 40-60% phase. In Fluoroscopy, the axial moving distance of the lead marker on average was 4.38cm and the distance on average from the top phase to the beam off phase was 3.342cm in the 20-80% phase, 3.342cm in the 30-70% phase, and 0.84cm in the 40-60% phase. Comparing the results, the difference in the full phase was 0.08cm, the 20~80% phase was 0.23cm, the 30~70% phase was 0.10cm, and the 40~60% phase was 0.07cm. The axial lengths of ITV(Internal Target Volume) and PTV(Planning Target Volume) contoured by 4DCT taken using cedar solid tumor inserts were measured to be 6.40cm and 7.40cm in the full phase, 4.96cm and 5.96cm in the 20~80% phase, 4.42cm and 5.42cm in the 30~70% phase, and 2.95cm and 3.95cm in the 40~60% phase. In the Gated CBCT, the axial lengths on average was measured to be 6.35 cm in the full phase, 5.25 cm in the 20-80% phase, 4.04 cm in the 30-70% phase, and 3.08 cm in the 40-60% phase. Comparing the results, it was confirmed that the error was within ±8.5% of ITV Conclusion: Conventional CBCT had a problem that errors occurred due to organ movement in areas affected by respiratory movement, but through this study, obtained an image similar to the target volume of the setting phase using Gated CBCT and verified its usefulness. However, as the setting phase decreases, the scan time was increases. Therefore, considering the scan time and the error in setting phase, It is recommended to apply it to patients with respiratory coordinated stereotactic radiation therapy using a wide phase of 30-70% or more.

Evaluation 4D-CT Simulation used of Motion Organ and Tumor for Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 4D-CT simulation을 이용한 동적장기와 종양 움직임 평가)

  • Kim, Seung-Chul;Kim, Min-A
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.395-402
    • /
    • 2015
  • when the radiation therapy of chest and abdomen, evaluation of the tumor motion and the data was used to minimize damage to normal tissues by separating the tumor and normal tissue and maximize tumor therapeutic effect. Lung and liver cancer each 20 patients based on the 50% top phase using 4D-CT simulation and Light speed-16 of shooting equipment 30 ~ 70 % gating phase interval and 0 ~90 % movement in the full phase interval was measured. If the full phase 0 ~ 90% with gating phase 30~70% of tumors in the liver and lung is shown the biggest difference compared to the motion and the size of the GTV was the largest difference in the I(inferior), full phase 0~90% degree of tumor motion only when a relatively large, gating phase to 30~70% of the tumor when the movement has been found that the reduced average 7.1mm. In the 4D-CT simulation comparing the motion value when the full phase 0~90 % and gating phase 30~70 % when the motion value, twice in the gating phase 30~70 % more than full phase 0~90 % showed a small movement value. The exposure to normal tissues, based on the results obtained from the 4D-CT simulation can be significantly alleviated, After treatment will reduce pain and disability in patients with radiation is expected to be able to effective treatment.

Study of the Respiratory Monitoring System by Using the MEMS Acceleration Sensor (MEMS 가속도 센서를 이용한 환자 호흡동작 모니터링 체계 연구)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Kim, Dong Wook;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • In this study, we developed and evaluated the patient respiration training method which can help to avoid the problems for the limitation of RGRT applicable patient cases. By using the MEMS (micro-electro-mechanical-system) acceleration sensor, we measured movement of motion phantom. We had compared the response of MEMS with commercially introduced real time patient monitoring (RPM) system. We measured the response of the MEMS with 1 dimensional motion phantom movement for 2.5, 3.0, 3.5 second of period and the 2.0, 3.0, 4.0 cm of the amplitudes. The measured period error of the MEMS system was 0.6~6.0% compared with measured period using RPM system. We found that the shape of MEMS signals were similar with RPM system. From this study, we found the possibility of MEMS as patient training system.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF