Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.1
/
pp.33-42
/
2005
Identifying color codes needs precise color information of their constituents, and is far from trivial because colors usually suffer severe distortions throughout the entire procedures from printing to acquiring image data. To accomplish accurate identification of colors, we need a reliable segmentation method to separate different color regions from each other, which would enable us to process the whole pixels in the region of a color statistically, instead of a subset of pixels in the region. Color image segmentation can be accomplished by performing edge detection on component image(s). In this paper, we separately detected edges on component images from RGB, HSI, and YIQ color models, and performed mathematical analyses and experiments to find out a pair of component images that provided the best edge image when combined. The best result was obtained by combining Y- and R-component edge images.
Depth map is an image that contains distance information in 3D space on a 2D plane and is used in various 3D vision tasks. Many existing depth estimation studies mainly use narrow FoV images, in which a significant portion of the entire scene is lost. In this paper, we propose a technique for generating 360° omnidirectional RGBD images from a sparse set of narrow FoV images. The proposed generative adversarial network based image generation model estimates the relative FoV for the entire panoramic image from a small number of non-overlapping images and produces a 360° RGB and depth image simultaneously. In addition, it shows improved performance by configuring a network reflecting the spherical characteristics of the 360° image.
In this study, size of the fruit of Japanese apricot (plum) was estimated through a plum recognition and size estimation program using 3D images in order to control the Eurytoma maslovskii that causes the most damage to plum in a timely manner. In 2018, night shooting was carried out using a Kinect 2.0 Camera. For night shooting in 2019, a RealSense Depth Camera D415 was used. Based on the acquired images, a plum recognition and estimation program consisting of four stages of image preprocessing, sizeable plum extraction, RGB and depth image matching and plum size estimation was implemented using MATLAB R2018a. The results obtained by running the program on 10 images produced an average plum recognition error rate of 61.9%, an average plum recognition error rate of 0.5% and an average size measurement error rate of 3.6%. The continued development of these plum recognition and size estimation programs is expected to enable accurate fruit size monitoring in the future and the development of timely control systems for Eurytoma maslovskii.
Rafaella Mariana Fontes de Braganca;Rafael Ratto Moraes ;Andre Luis Faria-e-Silva
Restorative Dentistry and Endodontics
/
v.46
no.2
/
pp.23.1-23.11
/
2021
Objectives: This study assessed the reliability of digital color measurements using images of resin composite specimens captured with a cellphone. Materials and Methods: The reference color of cylindrical specimens built-up with the use of resin composite (shades A1, A2, A3, and A4) was measured with a portable spectrophotometer (CIELab). Images of the specimens were obtained individually or pairwise (compared shades in the same photograph) under standardized parameters. The color of the specimens was measured in the images using RGB system and converted to CIELab system using image processing software. Whiteness index (WID) and color differences (ΔE00) were calculated for each color measurement method. For the cellphone, the ΔE00 was calculated between the pairs of shades in separate images and in the same image. Data were analyzed using 2-way repeated-measures analysis of variance (α = 0.05). Linear regression models were used to predict the reference ΔE00 values of those calculated using color measured in the images. Results: Images captured with the cellphone resulted in different WID values from the spectrophotometer only for shades A3 and A4. No difference to the reference ΔE00 was observed when individual images were used. In general, a similar ranking of ΔE00 among resin composite shades was observed for all methods. Stronger correlation coefficients with the reference ΔE00 were observed using individual than pairwise images. Conclusions: This study showed that the use of cellphone images to measure the color difference seems to be a feasible alternative providing outcomes similar to those obtained with the spectrophotometer.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.325-327
/
2012
최근 국내외 디지털 가전 업체들은 다양한 3D 기술을 앞세워 가정 내에서도 편하게 즐길 수 잇도록 다양한 3DTV를 출시하고 있다. 이러한 3DTV에서 입체영상을 시청하기 위해서는 입체콘텐츠가 제작되어 전송되어야 한다[1]. 이러한 입체 콘텐츠는 RGB 영상과 깊이맵을 이용하여 생성할 수 있는데, 이때 깊이맵은 사용자의 용도에 따라 다양한 형태로 변환될 수 있다. 최근엔 이러한 깊이맵과 3D 영상의 컬러를 변환하여 지각 깊이감을 개선하는 영상처리 기술에 대한 관심이 높아지고 있다. 이에 따라, 본 논문에서는 기존의 컬러 변환을 통한 2D 영상의 지각 깊이감 개선을 입체영상에 적용하여, 3D 지각 입체감을 동시에 향상시키는 방법을 제안한다. 이를 위해 대조 변환 및 배경 다크닝 방법을 제안하고, 실험을 통해 제안 방법이 상기 목적을 얻을 수 있는 것을 검증하였다.
In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.
Jung, Eui-Jung;Park, Sungho;Kang, Jin Kyu;Son, So Eun;Cho, Gun Rae;Lee, Youngho
The Journal of Korea Robotics Society
/
v.17
no.4
/
pp.417-424
/
2022
In this paper, the developed trunk cargo unloading automation system is introduced, and the RGB-D sensor-based box loading situation recognition method and unloading plan applied to this system are suggested. First of all, it is necessary to recognize the position of the box in a truck. To do this, we first apply CNN-based YOLO, which can recognize objects in RGB images in real-time. Then, the normal vector of the center of the box is obtained using the depth image to reduce misrecognition in parts other than the box, and the inner wall of the truck in an image is removed. And a method of classifying the layers of the boxes according to the distance using the recognized depth information of the boxes is suggested. Given the coordinates of the boxes on the nearest layer, a method of generating the optimal path to take out the boxes the fastest using this information is introduced. In addition, kinematic analysis is performed to move the conveyor to the position of the box to be taken out of the truck, and kinematic analysis is also performed to control the robot arm that takes out the boxes. Finally, the effectiveness of the developed system and algorithm through a test bed is proved.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.12
/
pp.1061-1066
/
2013
In the steel industry, the detection of tiny defects including its 3D characteristics on steel surfaces is very important from the point of view of quality control. A multi-spectral photometric stereo method is an attractive scheme because the shape of the defect can be obtained based on the images which are acquired at the same time by using a multi-channel camera. Moreover, the calculation time required for this scheme can be greatly reduced for real-time application with the aid of a GPU (Graphic Processing Unit). Although a more reliable shape reconstruction of defects can be possible when the numbers of available images are increased, it is not an easy task to construct a camera system which has more than 3 channels in the visible light range. In this paper, a new 6-channel camera system, which can distinguish the vertical/horizontal linearly polarized lights of RGB light sources, was developed by adopting two 3-CCD cameras and two polarized lenses based on the fact that the polarized light is preserved on the steel surface. The photometric stereo scheme with 6 images was accelerated by using a GPU, and the performance of the proposed system was validated through experiments.
4D film is just a film that made by adding some physical effects to 3D film or general film. In order to provide physical effects to the audience, the data that make the physical effect must be added to each frames. In this paper, we proposed a video detection system that can efficiently provide physical effects by assessing the present situation such as explosion scene, snowing scene. The proposed video detection system contains an algorithm for fire detection by using R color and $C_r$ value, and also an algorithm for snow detection by using RGB color model. The system constitutes in a MCU that from 8051 family. In the performance evaluations, the result shows that 91% of detection rate in case of fire and 25% of false detection rate in case of snow. Also the system is capable of providing physical effects automatically.
KIPS Transactions on Software and Data Engineering
/
v.11
no.12
/
pp.509-516
/
2022
Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.