Optimal Combination of Component Images for Segmentation of Color Codes

칼라 코드의 영역 분할을 위한 성분 영상들의 최적 조합

  • Published : 2005.01.01

Abstract

Identifying color codes needs precise color information of their constituents, and is far from trivial because colors usually suffer severe distortions throughout the entire procedures from printing to acquiring image data. To accomplish accurate identification of colors, we need a reliable segmentation method to separate different color regions from each other, which would enable us to process the whole pixels in the region of a color statistically, instead of a subset of pixels in the region. Color image segmentation can be accomplished by performing edge detection on component image(s). In this paper, we separately detected edges on component images from RGB, HSI, and YIQ color models, and performed mathematical analyses and experiments to find out a pair of component images that provided the best edge image when combined. The best result was obtained by combining Y- and R-component edge images.

칼라 화소 성분들은 인쇄에서부터 획득하기까지의 전 과정에 거쳐 심하게 왜곡되기 때문에, 획득된 영상에서 정확한 칼라 정보를 필요로 하는 칼라 코트 식별 작업은 매우 어렵다. 정확한 칼라 식별을 달성하기 위해서는 서로 다른 칼라 영역들을 정화하게 분리해냄으로써 어떤 칼라 영역의 부분이 아닌 전체 화소들에 대한 통계적 처리를 가능하게 하는 영역 분할 기술이 필요하다. 칼라 영역 분한은 성분 영상(들)에 대한 경계선 검출을 수행하여 달성할 수 있다. 이 논문에서는 RGB, HSI, YIQ의 세 칼라 모델로부터의 성분 영상들에 대해 독립적으로 경계선을 검출하고, 결합에 의해 가장 완전한 경계선 영상을 제공하는 한쌍의 성분을 찾아내기 위한 수학적 분석과 실험을 수행하였다. 실험 결과, Y-와 R-성분 경계선 영상들을 결합했을 때 가장 좋은 결과를 얻을 수 있었다.

Keywords

References

  1. K. Finkenzeller and R. Waddington, RFID Handbook - Fundamentals and Applications in Contactless Smart Cards and Identificution, John Wiley & Sons, Inc., 2003
  2. 한탁돈, '칼라코드', TTA 저널, no. 84, pp. 104-110, Dec. 2002
  3. B. H. Kwon, H.-J. Yoo, and T. W. Kim, 'Detecting boudaries between different color regions in color codes', ICEIC2004-Hanoi, 2004
  4. V. P. George, G. J. Beach, and J. C. Charles, 'A Realtime Object Tracking System Using a Color Camera', 30th Applied Imagery Pattern Recognition Workshop (AIPR '01), Washington D.C., pp. 137-142, 2001 https://doi.org/10.1109/AIPR.2001.991216
  5. G.-J. Jang, and I.-S. Kweon, 'Robust Object Tracking Using an Adaptive Color Model', Proc. of the 2001 IEEE Inter. Conf. on Robotics & Automation, Seoul, pp. 1677-1682, 2001 https://doi.org/10.1109/ROBOT.2001.932852
  6. Yang,J. and Waibel,A., 'A Real-time Face Tracker', Proc. of IEEE Workshop on Application of Computer Vision, pp. 142-147, 1996 https://doi.org/10.1109/ACV.1996.572043
  7. Jones,M.J. and Rehg,I.M., 'Statistical Color Models with Application to Skin Detection', Int'l Journal of Computer Vision, vol. 46, no. 1, pp. 81-96, 2002 https://doi.org/10.1023/A:1013200319198
  8. Y. Deng, and B. S. Manjunath, 'Color Image Segmentation', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR1999), vol. 2, pp. 446-451, 1999 https://doi.org/10.1109/CVPR.1999.784719
  9. F. Meyer, 'Color image segmentation', Proc. IEE Int. Conf. Image Processing and its Applications, The Netherlands, pp. 303-306, 1992
  10. D. Comaniciu and P. Meer, 'Robust Analysis of Feature Spaces: Color Image Segmentation', Proceedings of IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, pp. 750-755, June 1997 https://doi.org/10.1109/CVPR.1997.609410
  11. S. Makrogiannis, G. Economou, and S. Fotopoulos, 'A Graph Theory Approach for Automatic Segmentation of Color Images', Proc. Int. Workshop on Very Low Bitrate Video Coding (VLBV 2001), Athens, pp. 162-166, 2001
  12. N. Papamarkos, C. Strouthopoulos, and I. Andreadis, 'Multithresholding of color and gray-level images through a neural network techniques', Image and Vision Computing, vol. 18, pp. 213-222, 2000 https://doi.org/10.1016/S0262-8856(99)00015-3
  13. Q. T. Luong, 'Color in computer vision', Handbook of Pattern Recognition and Computer Vision, pp. 311-368. 1993
  14. Y. J. Cho, A Study on Resistor Color Code Identification Using Color Image, Master's Thesis, Korean Technique Education University, 2000
  15. R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB, Prentice Hall, 2004
  16. J. Canny, 'A Computational Approach to Edge Detection', IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, 1986 https://doi.org/10.1109/TPAMI.1986.4767851
  17. J. R. Parker, Algorithms for Image Processing and Computer Vision, Wiley, 1997
  18. T. Y. Zhang, and C. Y. Suen, 'A fast parallel algorithm for thinning digital patterns', Communications of the ACM, vol. 27, pp. 236-239, 1984 https://doi.org/10.1145/357994.358023