• 제목/요약/키워드: RGB camera

검색결과 316건 처리시간 0.021초

OSP 표면처리된 PCB 볼 패드용 CIELAB 색좌표 기반 검사 시스템 (Inspection System using CIELAB Color Space for the PCB Ball Pad with OSP Surface Finish)

  • 이한주;김창석
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.15-19
    • /
    • 2015
  • 본 연구에서는 OSP (organic solderability preservative) 표면처리된 PCB (printed circuit board) Cu 볼 패드의 변색을 검사하는 측정 시스템을 제안하였다. PCB 표면처리 중에서 OSP는 친환경적, 낮은 생산 비용 등의 장점으로 널리 이용되고 있으나 온도공정에 따른 변색이 발생하는 문제점이 있어서 접합 신뢰성 불량의 한 원인이 되고 있다. 이러한 변색 불량을 장치 비의존적 CIELAB 색좌표를 도입하여 분석하였다. 먼저, PCB 샘플을 검사하기 위해 적합한 측정 시스템을 표준 조명과 CCD 카메라를 이용하여 제작하고, 랩뷰 (labview) 프로그램을 이용하여 Cu 볼 패드의 변색을 검사하기 위한 이미지를 얻는 알고리즘을 제작하였다. 전체 PCB 이미지에서 이진화 (binarization) 및 외곽영역 추적 (edge detection) 영상처리 과정을 통하여 Cu 볼 패드만의 이미지를 획득하고, 장치 의존적인 RGB 색좌표에서 $3{\times}3$ 변환 행렬을 이용하여 CIELAB 색좌표로 변환하는 과정을 거친다. 본 측정 시스템을 이용하여 변색이 발생한 PCB 샘플을 분석한 결과 Cu 볼 패드 만의 이미지를 대상으로 분석하면 연산에 소요되는 시간이 감소하고 측정 시스템의 오인식률을 감소 시킬 수 있음을 실험적으로 증명하였다. 또한 CIELAB 색좌표 중 $L^*$ (밝음-어두움의 정도), $b^*$ (노랑-파랑의 정도)의 두 가지 기준의 조합이 Cu 볼 패드의 변색 검사에 적합한 색좌표로 분석되었다.

단일 Bayer 영상으로 부터 다양한 노출을 가지는 Low Dynamic Range 영상들의 추정 (Estimation of Differently Exposed Low Dynamic Range Images from a Single Bayer Image)

  • 이태형;하호건;하영호
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.74-79
    • /
    • 2011
  • HDR(high dynamic range) 영상 기법은 일반 카메라에서 획득되는 영상의 LDR(low dynamic range)의 한계를 극복하는 방법을 일컫는다. 일반적으로 이 기법은 카메라의 노출에 따른 단계별 LDR 영상들을 획득하고 통합함으로써 획득된다. 그러나 기존의 연구에서는 여러 번에 걸친 영상획득 과정이 필요하고 그에 따른 고스트(ghost) 현상을 야기한다. 이러한 한계를 극복하기 위하여, 본 연구에서는 센서에서 획득되는 단일 Bayer 영상으로부터 사용자가 요구하는 노출의 LDR 영상을 채널상관성을 고려하여 추정할 수 있는 방법을 제안하였다. 제안된 방법은 먼저 입 출력 간의 상관관계를 나타내는 노출(exposure) look-up table(LUT)를 각 채널별로 생성을 한다. 그리고 입력 영상의 평균휘도와 노출을 LUT에 적용하여, 최종 LDR 영상을 위한 새로운 노출을 추정한다. 다음으로 입력 영상의 각 픽셀 값과 추정된 노출을 LUT에 적용함으로써 목적하는 밝기를 가지는 LDR 영상을 추정 할 수 있다. 이 때, 포화된 영역의 경우는 채널의 상관성을 고려하여 추정함으로써 실제 노출로 획득한 영상과의 차이를 줄이는 방법을 제안하였다. 결과영상은 PSNR을 비교하여 정확성을 증명하였으며, 또한 디스플레이를 위하여 톤맵핑(tone mapping)을 적용한 영상을 사용한 비교에서 실제 획득된 영상과 추정한 영상의 차이가 비슷함을 확인하였다.

영상집적 기반의 다시점 부호화 기술을 이용한 디지털 홀로그램의 압축 기술 (Digital Hologram Compression Technique using Multi-View Prediction based on Image Accumulation)

  • 최현준;서영호;배진우;유지상;김화성;김동욱
    • 한국통신학회논문지
    • /
    • 제31권10C호
    • /
    • pp.933-941
    • /
    • 2006
  • 본 논문에서는 다시점 예측기법과 MPEG 동영상 압축 표준 기법을 이용하여 CCD 카메라로부터 광학적으로 획득되거나 컴퓨터에 의해 생성된 디지털 홀로그램(프린지 패턴)을 효율적으로 압축하는 방법을 제안하였다. 이 방법은 RGB의 각 색차신호를 분리하여 처리하고, 각 색차신호의 객체영상을 $N{\times}N$ 크기로 분할한 부분영상들을 기본단위로 하며, 이때의 각 부분영상은 객체 전체에 대한 정보를 보유하고 있다. 본 논문의 방법은 분할되고 주파수 변환된 한 열의 부분영상들을 다시점 예측기법을 이용하여 집적영상을 만들고, 이 영상을 기준으로 데이터압축을 수행한다. 즉, 이 집적영상에서 역으로 생성된 부분영상과 원 부분영상에 대해 MPEG의 움직임 예측/보상방법으로 데이터를 압축한다. 따라서 압축된 데이터는 집적영상을 만들기 위한 각 부분영상의 변위벡터, 집적영상, 각 부분영상에 대한 움직임벡터 및 보상영상이다. 이 방법을 구현하여 실험한 결과 기존의 방법에 비해 동일 압축율에서의 NC(Normal Correlation) 값이 약 4% 이상 높은 값을 보여 압축효율이 더 좋음을 알 수 있었다. 따라서 본 논문의 방법은 디지털 홀로그램 데이터를 전송하여야 하는 응용분야에서 보다 효율적으로 사용될 수 있을 것으로 기대된다.

PLC제어와 영상처리를 이용한 계란의 비파괴 신선도 측정 시스템 개발 (Development of non-destructive freshness measurement system for eggs using PLC control and image processing)

  • 김태정;김선정;이동구;이정호;이영석;황헌;최선
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.162-169
    • /
    • 2019
  • 분광법을 이용한 비파괴 신선도 측정 연구들이 여러 차례 진행되어 왔지만, 기실과 신선도 간의 연구가 진행되지 않았다. 따라서 본 연구에서는 비파괴 방식으로 계란 내부의 기실을 시각적으로 계측하며 정량화하는 시스템을 개발함에 목적이 있다. 소형 챔버로 구성된 실험 환경은 2개의 850nm 대역의 IR 레이저, 2개의 서보모터, IR Cut RGB 카메라로 구성되며 계란 기실의 영상을 획득한다. 본 논문에서 계란의 기실 부피 비율이 2.9% 이하이고 밀도가 0.9800($g/cm^3$) 이상이면 60 이상의 호우 유닛 값을 갖는 B등급 이상의 신선한 계란으로 판단한다. 상기 결과 중량측정용 저울, 비파괴 판정시스템과 신선도 측정 알고리즘이 있으면 계란을 파괴하지 않고 B등급 이상의 판매 가능한 계란을 판정할 수 있음을 의미한다. 향후 계란의 신선도 판정을 할 때 계란의 기실 부피 비율과 밀도를 이용하여 계란 신선도를 비파괴 적으로 판별할 수 있는 기초 자료로 사용할 수 있기를 기대한다.

깊이 영상 기반 필터를 적용한 효과적인 호모그래피 추정 방법 (A Method for Effective Homography Estimation Applying a Depth Image-Based Filter)

  • 주용준;홍명덕;윤의녕;고승현;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권2호
    • /
    • pp.61-66
    • /
    • 2019
  • 증강현실은 카메라로 촬영하고 있는 영상에 가상의 객체를 실시간으로 합성하여 가상의 객체가 현실에 존재하는 것처럼 보이게 하는 기술이다. 증강현실에서 현실에 존재하는 물체에 가상의 물체를 증강하기 위해서는 현실에 존재하는 물체의 위치와 방향을 정확하게 추정해야 하는데, 이 때 활용되는 기술이 영상의 호모그래피(Homography) 이다. 이러한 호모그래피는 영상의 특징점 좌표에 RANSAC 알고리즘을 적용하여 추정할 수 있는데, RANSAC 알고리즘을 이용한 호모그래피 추정 방식은 호모그래피를 추정하고자하는 물체 이외의 배경에 특징점이 많을 경우 정확한 호모그래피를 추정할 수 없다는 문제점이 존재했다. 본 논문에서는 호모그래피를 추정하고자하는 물체가 가까이에 있고 배경이 상대적으로 멀리 위치해있을 때 영상 각 픽셀의 거리 값을 알 수 있는 깊이 영상을 활용하면 물체와 배경을 쉽게 분리할 수 있다는 점을 이용하여 배경의 특징점을 필터링하는 방법을 제안한다. 이를 위하여 본 논문에서는 흑백조 영상인 깊이 영상을 Otsu 알고리즘을 이용하여 사용자와 거리가 가까운 영역과 거리가 먼 영역으로 이진화하고, RGB 영상에서 추출된 특징점 중에서 거리가 먼 영역에 위치한 특징점을 제거함으로써 특징점을 활용한 호모그래피 추정 결과를 향상시킨다. 이러한 방법을 기존의 호모그래피 추정 방법에 적용한 결과 수행시간이 71.7% 단축되었으며, RANSAC 알고리즘의 반복 횟수가 69.4% 줄어들었고, 참정보 비율이 16.9% 증가하였다.

자동 운량 관측에서 전천 영상 보정이 관측치에 미치는 효과 (Effect of All Sky Image Correction on Observations in Automatic Cloud Observation)

  • 윤한경
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.103-108
    • /
    • 2022
  • 광각 카메라 시스템으로 획득한 전천 영상을 이용한 구름 관측은 21세기 초반부터 다양한 연구가 진행되었으나 목측을 완벽하게 대체할 자동 관측 시스템은 얻지 못하였다고 판단된다. 본 연구는 목측의 자동화를 목표로 제안한 알고리즘의 최종 단계인 구름 관측의 정량화를 검증하기 위하여 전천 영상과 보정 영상의 구름 분포를 비교 분석하였다. 그 이유는 구름은 종류에 따라 일정한 높이에 형성되고, 전천 영상은 망막의 영상처럼 렌즈의 중심부는 확대되고 가장자리는 축소되지만, 인간의 학습 능력과 공간 인지 능력 등이 구름 관측에 미치는 영향은 알려진 바가 없기 때문이다. 본 연구 결과는 전천 영상과 보정 영상의 구름 관측 오차가 평균은 1.23%였다. 따라서 10분위 또는 10단계로 관측되는 목측과 비교하면 보정에 의한 오차는 관측량의 1.23%로 목측의 허용 오차보다 매우 적을뿐만 아니라 인간의 실수를 포함하지 않으므로 정확히 정량화된 데이터의 수집이 가능함을 확인하였다. 또한 보정에 의한 운량의 변화가 미미하므로, 불필요한 보정 단계를 생략하고 보정 이전의 전천 영상에서 운량을 관측하여도 정확한 관측치를 얻을 수 있음을 확인하였다.