• 제목/요약/키워드: RG

검색결과 1,199건 처리시간 0.034초

Changes of Prosapogenin Components in Tienchi Seng (Panax notoginseng) by Ultrasonic Thermal Fusion Process

  • Lee, Jae Bum;Yang, Byung Wook;Kim, Do Hyeong;Jin, Dezhong;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • 제27권1호
    • /
    • pp.10-17
    • /
    • 2021
  • The purpose of this study is to develop a new method of producing tienchi seng (notoginseng, Panax notoginseng) extracts featuring high concentrations of the ginsenoside Rg3, Rg5, and Rg6, special components of Korean red ginseng. The chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by HPLC. Tienchi seng was heat-processed at 100℃ and the optimum conditions were identified. The highest concentrations of total saponin (29.723%) and the ginsenoside Rg3 (1.769%), Rg5 (5.979%), and Rg6 (13.473%) were produced at 48 hours. Also, when tienchi seng was subjected to the ultrasonic thermal fusion (100℃) process, the concentrations of total saponin (30.578%), ginsenoside Rg3 (2.392%), Rg5 (6.614%), and Rg6 (13.017%) were highest at 36 hours. On the other hand, the 2-hour heat-processed extract and 2-hour ultrasonic thermal fusion-processed extract did not contain ginsenoside Rg3, Rg5, and Rg6. The ultrasonic thermal fusion process had an extraction yield that was approximately 1.26 times greater than that of the heat process. These results indicate that the highly functional tienchi seng extracts created through the ultrasonic thermal fusion process are more industrially useful than those produced using the heat process.

A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease

  • Li, Naijing;Liu, Ying;Li, Wei;Zhou, Ling;Li, Qing;Wang, Xueqing;He, Ping
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.9-17
    • /
    • 2016
  • Background: Alzheimer's disease (AD) is a progressive brain disease, for which there is no effective drug therapy at present. Ginsenoside Rg1 (G-Rg1) and G-Rg2 have been reported to alleviate memory deterioration. However, the mechanism of their anti-AD effect has not yet been clearly elucidated. Methods: Ultra performance liquid chromatography tandem MS (UPLC/MS)-based metabolomics was used to identify metabolites that are differentially expressed in the brains of AD mice with or without ginsenoside treatment. The cognitive function of mice and pathological changes in the brain were also assessed using the Morris water maze (MWM) and immunohistochemistry, respectively. Results: The impaired cognitive function and increased hippocampal $A{\beta}$ deposition in AD mice were ameliorated by G-Rg1 and G-Rg2. In addition, a total of 11 potential biomarkers that are associated with the metabolism of lysophosphatidylcholines (LPCs), hypoxanthine, and sphingolipids were identified in the brains of AD mice and their levels were partly restored after treatment with G-Rg1 and G-Rg2. G-Rg1 and G-Rg2 treatment influenced the levels of hypoxanthine, dihydrosphingosine, hexadecasphinganine, LPC C 16:0, and LPC C 18:0 in AD mice. Additionally, G-Rg1 treatment also influenced the levels of phytosphingosine, LPC C 13:0, LPC C 15:0, LPC C 18:1, and LPC C 18:3 in AD mice. Conclusion: These results indicate that the improvements in cognitive function and morphological changes produced by G-Rg1 and G-Rg2 treatment are caused by regulation of related brain metabolic pathways. This will extend our understanding of the mechanisms involved in the effects of G-Rg1 and G-Rg2 on AD.

Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression

  • Kim, Hye In;Kim, Jeon-Kyung;Kim, Jae-Young;Han, Myung Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.635-644
    • /
    • 2019
  • Background: To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods: RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-${\alpha}$, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results: RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion: fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.

Antihyperlipidemic Effects of Red Ginseng, Crataegii Fructus and Their Main Constituents Ginsenoside Rg3 and Ursolic Acid in Mice

  • Min, Sung-Won;Jung, Sang-Hyun;Cho, Ki-Ho;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.364-369
    • /
    • 2008
  • Anti-hyperlipidemic effect of red ginseng (RG; the steamed root of Panax ginseng C.A. Meyer) and Crataegii fructus (CF, the fruit of Crataegus pinnatifida BGE), which are used frequently in China and Korea as herbal medicines to treat arteriosclerosis, were investigated. Treatments of RG and CF significantly reduced blood triglyceride (TG) and total cholesterol (TC) levels in Triton WR-1339-induced hyperlipidemic mice and serum TG levels in corn oil-induced hypertriglyceridemic mice. Ginsenoside Rg3 and ursolic acid, the main constituents of RG and CF, respectively, also reduced TG and TC levels in hyperlipidemic mice. RG and CF significantly lowered the high blood TG and TC levels and body and epididymal mass weights induced by long-term feeding of a high-fat diet and increased the high-fat diet-induced decrease in blood HDL cholesterol levels. RG and Rg3 reduced the blood TC levels more than CF and ursolic acid. However, blood TG level were reduced by CF and ursolic acid more than RG and Rg3. RG, CF, and their constituents also inhibited pancreatic lipase and HMG-CoA reductase activities. The most potent inhibitor was Rg3. These findings suggest that RG and CF may be suitable for the therapies of hypercholesterolemia and triglyceridemia, respectively.

Immunochemical Assay for Korean Ginseng Saponins I Synthesis of Ginsenoside-Protein Conjugate (인삼사포닌의 면역화학적 분석법(I) 인삼사포닌-단백질 결합체의 합성)

  • 한병훈;한용남
    • YAKHAK HOEJI
    • /
    • 제25권2호
    • /
    • pp.43-47
    • /
    • 1981
  • In an attempt to obtain a saponin antigen, ginsenoside Rg$_{1}$ of Korean ginseng was condensed with bovine serum albumin through a series of modification in the side chain structure of ginsenoside Rg$_{1}$ to prepare a reactive intermediate $Rg_{1}$ azide. The modification of ginsenoside $Rg_{1}$[1] yielded $Rg_{1}$ decacetate [II], mp 252, $Rg_{1}$ acetate-glycol [III], mp 263, $Rg_{1}$ acetate-trisnoraldehyde [IV], mp 231, $Rg_{1}$ acetate-carboxylic acid [V], mp 282, $Rg_{1}$ acetate-methyl ester [VI], mp 271, $Rg_{1}$ hydrazide [VII], mp 220, and finally a reactive intermediate $Rg_{1}$ azide [VIII].

  • PDF

Inhibitory Effect of Ginsenoside Rg3 and its derivative Ginsenoside Rg3-2H on NO production and lymphocyte proliferation (Ginsenoside Rg3 및 그 유도체 Ginsenoside Rg3-2H의 NO 생성 및 lymphocyte 분열 억제 효과)

  • Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제32권3호
    • /
    • pp.264-269
    • /
    • 2008
  • Ginsenosides are major components in Panax ginseng and known to have numerous pharmacological activities such as anti-cancer, anti-diabetes, anti-viral and anti-atherosclerosis effects. In this study, the regulatory activities of G-Rg3 and its derivative 25-hydroxy Rg3 (G-Rg3-2H) on the production of nitric oxide (NO) in macrophages and the proliferation of lymphocytes prepared from spleen and bone marrow under treatment of lipopolysaccharide (LPS) or concanavalin (Con) A were examined. G-Rg3 and G-Rg3-2H dose-dependently inhibited NO production from LPS-activated RAW264.7 cells and in agreement, these compounds protected RAW264.7 cells from LPS-mediated cytotoxicity. In contrast, G-Rg3-2H dose-dependently inhibited lymphocyte proliferation induced by both LPS and Con A, while there was no inhibition by G-Rg3. Therefore, our data suggest that these compounds may be applied for NO-mediated or lymphocyte-mediated immunological diseases.

Genetic Diversity of Didymella bryoniae for RAPD Profiles Substantiated by SCAR Marker in Korea

  • Shim, Chang-Ki;Seo, Il-Kyo;Jee, Hyeong-Jin;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • 제22권1호
    • /
    • pp.36-45
    • /
    • 2006
  • Twenty isolates of Didymella bryoniae were isolated from infected cucurbit plants in various growing areas of southern Korea in 2001 and 2002. Random Amplified Polymorphic DNA (RAPD) group [RG] I of D. bryoniae was more virulent than RG IV to watermelon. Virulence of the RG I isolate was strong to moderate to cucumber, whereas that of the RG IV varied from strong, moderate to weak. Two hundred seventy-three amplified fragments were produced with 40 primers, and were analyzed by a cluster analysis using UPGMA method with an arithmetic average program of NTSYSPC. At the distance level of 0.7, two major genomic DNA RAPD groups were differentiated among 20 isolates. The RG I included 7 isolates from watermelon and one isolate from melon, whereas the RG IV included 12 isolates from squash, cucumber, watermelon and melon. Amplification of internal transcribed spacer (ITS) region and small subunit rRNA region from the 20 isolates yielded respectively a single fragment. Restriction pattern with 12 restriction enzymes was identical for all isolates tested, suggesting that variation in the ITS and small subunit within the D. bryoniae were low. Amplification of the genomic DNAs of the tested isolates with the sequence characterized amplified regions (SCAR) primer RG IF-RG IR specific for RG I group resulted in a single band of 650bp fragment for 8 isolates out of the 20 isolates. Therefore, these 8 isolates could be assigned into RG I. The same experiments done with RG IIF-RG IIR resulted in no amplified PCR product for the 20 isolates tested. An about 1.4 kb-fragment amplified from the RG IV isolates was specifically hybridized with PCR fragments amplified from genomic DNAs of the RG IV isolates only, suggesting that this PCR product could be used for discriminating the RG IV isolates from the RG I isolates as well other fungal species.

Effects of red glasswort as sodium chloride substitute on the physicochemical properties of pork loin ham

  • Jeong, Tae-Jun;Kim, Tae-Kyung;Kim, Hyun-Wook;Choi, Yun-Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권4호
    • /
    • pp.662-669
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effect of red glasswort (RG) (Salicornia herbacea L.) curing on the physicochemical, textural and sensory properties of cooked pork loin ham (M. longissimus thoracis et lumborum). Methods: All treatments were cured with different salt and RG powder levels. RG0 treatment was prepared with only 4% NaCl (w/w) as a control, and RG25, 3% NaCl:1% RG (w/w); RG50, 2% NaCl:2% RG (w/w); RG75, 1% NaCl:3% RG (w/w); RG100, 0% NaCl:4% RG (w/w) treatments were prepared sequentially. All samples were individually vacuum packaged in polyethylene bags and stored for 7 d at 3℃±1℃. Results: The results showed that as the rate of RG substitution increased, pH value, redness, myofibrillar protein solubility, and myofibrillar fragmentation index increased (p<0.05), but salt concentration and shear force decreased (p<0.05). However, there were no significant differences in cooking loss and moisture content. In terms of sensory evaluation, RG100 exhibited higher scores in tenderness and juiciness than RG0 (p<0.05). Conclusion: The partial substitution of NaCl by RG could improve the physicochemical properties, textural and sensory characteristics of cooked pork loin. Therefore, it is suggested that RG as a natural salt replacer could be an effective ingredient for developing low-sodium cured hams.

Protective Effects of Ginsenoside Rg3 against Cholesterol Oxide-Induced Neurotoxicity in the Rat

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제33권4호
    • /
    • pp.294-304
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of various symptoms in South Korea. The neuroprotective effects of ginsenoside $Rg_3$ (G-$Rg_3$) on cholesterol-oxide-(CO)-induced neurotoxicity were investigated through the analyses of rat brains. The recently accumulated reports show that ginseng saponins (GTS), the major active ingredients of Panax ginseng, have protective effects against neurotoxin insults. In the present study, the neuroprotective effects of G-$Rg_3$ on CO-induced hippocampal excitotoxicity were examined in vivo. The in-vitro studies using rat cultured hippocampal neurons revealed that G-$Rg_3$ treatment significantly inhibited CO-induced hippocampal cell death. G-$Rg_3$ treatment not only significantly reduced CO-induced DNA damage but also attenuated CO-induced apoptosis. The in-vivo studies that were conducted revealed that the intracerebroventricular (i.c.v.) pre-administration of G-$Rg_3$ significantly reduced i.c.v. CO-induced hippocampal damage in rats. To examine the mechanisms underlying the in-vitro and in-vivo neuroprotective effects of G-$Rg_3$ against CO-induced hippocampal excitotoxicity, the effect of G-$Rg_3$ on the CO-induced elevations of the apoptotic cells in cultured hippocampal cells was examined, and it was found that G-$Rg_3$ treatment inhibited CO-induced apoptosis. The histopathological evaluation demonstrated that G-$Rg_3$ significantly diminished the apoptosis in the hippocampus and also spared the hippocampal CA1, CA3, and dentate gyrus neurons. G-$Rg_3$ also significantly improved the CO-caused behavioral impairment. G-$Rg_3$ itself had no effect, however, on the CO-induced inhibition of succinate dehydrogenase activity (data not shown). These results collectively indicate the G-$Rg_3$-induced neuroprotection against CO in rat hippocampus. With regard to the wide use of G-$Rg_3$, this agent is potentially beneficial in treating CO-induced brain injury.

The Comparison of Ginseng Prosapogenin Composition and Contents in Red and Black Ginseng (흑삼과 홍삼의 인삼 프로사포게닌 성분 비교)

  • Jo, Hee-Kyung;Sung, Min-Chang;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • 제42권4호
    • /
    • pp.361-365
    • /
    • 2011
  • The objective of this study is to provide basic information for developing a high-value ginseng product using ginseng saponin and prosapogenin. In order to achieve the proposed objective ginsenoside compositions of Black (BG) and Red (RG) ginseng extract with 95% ethyl alcohol were examined by means of HPLC. The crude saponin and ginsenoside composition of processed ginseng products were analyzed and compared, with BG topping the list with a crude saponin content of 7.53%, followed by RG (5.29%). Ginseng prosapogenin (ginsenosides $Rg_2$, $Rg_3$, $Rg_5$, $Rg_6$, $Rh_1$, $Rh_4$, $Rk_1$, $Rk_3$, $F_1$ and $F_4$) in BG was found to be contained almost 2.6 times as much as that in RG. Ginsenosides $Rg_3$, $Rg_5$, $Rk_1$, $Rh_4$ and $F_4$ in BG in particular were found to be almost 3 times as much as those in RG. $Rg_6$ and $Rk_3$ in BG were also found to be almost 4 times as much as those in RG.