• 제목/요약/키워드: RFIC Chip

검색결과 27건 처리시간 0.02초

Design and Performance Evaluation of On-chip Antenna for Ultra Low Power Wireless Transceiver

  • Kwon, Won-Hyun
    • 전기전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.405-409
    • /
    • 2012
  • In this paper, on-chip antennas applicable to ultra low power wireless transceiver are designed and evaluated. Using $0.18{\mu}m$ SiGe MMIC process, 4 types of antenna with $1{\times}1mm^2$ dimensions are fabricated. The on-wafer measurement in a microwave probe station is conducted to measure the input VSWR and antenna performance of the designed on-chip antenna. Performance evaluation results show that developed antennas can be easily integrated into one-chip RF transceiver for ubiquitous applications, including WPAN and human body communications.

An IPD Based 2.5 GHz Power Divider for WiMax Applications

  • Maharjan, Ram Krishna;Kim, Nam-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.50-51
    • /
    • 2009
  • This paper presents integrated passive device (IPD) based on Wilkinson power divider. The simulated 2-way power divider has the insertion loss of 3.123 dB, output isolation of -24.576 dB, input return loss of 26.415 dB, and output return loss of 33.478 dB. The power divider is based on IPD process design simulation at 2.5 GHz for WiMAX (Worldwide Interoperability for Microwave Access) applications. The chip size of power divider is $1\;\times\;1.2\;mm^2$, which is under fabrication.

  • PDF

디지털 TV 튜너용 900MHz CMOS RF Front-End IC의 설계 및 구현 (Design of 900MHz CMOS RF Front-End IC for Digital TV Tuner)

  • 김성도;유현규;이상국
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.104-107
    • /
    • 2000
  • We designed and implemented the RFIC(RF front-end IC) for DTV(Digital TV) tuner. The DTV tuner RF front-end consists of low noise IF amplifier fur the amplification of 900 MHz RF signal and down conversion mixer for the RF signal to 44MHz IF conversion. The RFIC is implemented on ETRI 0.8u high resistive (2㎘ -cm) and evaluated by on wafer, packaged chip test. The gain and IIP3 of IF amplifier are 15㏈ and -6.6㏈m respectively. For the down conversion mixer gain and IIP3 are 13㏈ and -6.5㏈m. Operating voltage of the IF amplifier and the down mixer is 5V, current consumption are 13㎃ and 26㎃ respectively.

  • PDF

LNA를 위한 새로운 프로그램 가능 고주파 검사용 설계회로 (New Programmable RF DFT Circuit for Low Noise Amplifiers)

  • 류지열;노석호
    • 대한전자공학회논문지TC
    • /
    • 제44권4호
    • /
    • pp.28-39
    • /
    • 2007
  • 본 논문에서는 저잡음 증폭기 (LNA)를 위한 새로운 구조의 프로그램 가능한 고주파 검사용 설계회로 (RF DFT)를 제안한다. 개발된 RF DFT 회로는 DC 측정만을 이용하여 LNA의 RF 변수를 측정할 수 있으며, 최근의 RFIC 소자에 매우 유용하다. DFT 회로는 프로그램 가능한 커패시터 뱅크 (programmable capacitor banks)와 RF 피크 검출기를 가진 test amplifier를 포함하며, 측정된 출력 DC 전압을 이용하여 입력 임피던스와 전압이득과 같은 LNA 사양을 계산할 수 있다. 이러한 온 칩 DFT 회로는 GSM, Bluetooth 및 IEEE802g 표준에 이용할 수 있는 3가지 주파수 대역, 즉 1.8GHz, 2.4GHz, 5.25GHz용 LNA에서 사용할 수 있도록 자체적으로 프로그램 할 수 있다. 이 회로는 간단하면서도 저렴하다

A 0.18-μm CMOS UWB LNA Combined with High-Pass-Filter

  • Kim, Jeong-Yeon;Kim, Chang-Wan
    • Journal of electromagnetic engineering and science
    • /
    • 제9권1호
    • /
    • pp.7-11
    • /
    • 2009
  • An Ultra-WideBand(UWB) Low-Noise Amplifier(LNA) is proposed and is implemented in a $0.18-{\mu}m$ CMOS technology. The proposed UWB LNA provides excellent wideband characteristics by combining a High-Pass Filter (HPF) with a conventional resistive-loaded LNA topology. In the proposed UWB LNA, the bell-shaped gain curve of the overall amplifier is much less dependent on the frequency response of the HPF embedded in the input stage. In addition, the adoption of fewer on-chip inductors in the input matching network permits a lower noise figure and a smaller chip area. Measurement results show a power gain of + 10 dB and an input return loss of more than - 9 dB over 2.7 to 6.2 GHz, a noise figure of 3.1 dB at 3.6 GHz and 7.8 dB at 6.2 GHz, an input PldB of - 12 dBm, and an IIP3 of - 0.2 dBm, while dissipating only 4.6 mA from a 1.8-V supply.

A Short Wavelength Coplanar Waveguide Employing Periodic 3D Coupling Structures on Silicon Substrate

  • Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.118-120
    • /
    • 2016
  • A coplanar waveguide employing periodic 3D coupling structures (CWP3DCS) was developed for application in miniaturized on-chip passive components on silicon radio frequency integrated circuits (RFIC). The CWP3DCS showed the shortest wavelength of all silicon-based transmission line structures that have been reported to date. Using CWP3DCS, a highly miniaturized impedance transformer was fabricated on silicon substrate, and the resulting device showed good RF performance in a broad band from 4.6 GHz to 28.6 GHz. The device as was 0.04 mm2 in size, which is only 0.74% of the size of the conventional transformer on silicon substrate.

A CMOS Frequency Synthesizer Block for MB-OFDM UWB Systems

  • Kim, Chang-Wan;Choi, Sang-Sung;Lee, Sang-Gug
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.437-444
    • /
    • 2007
  • A CMOS frequency synthesizer block for multi-band orthogonal frequency division multiplexing ultra-wideband systems is proposed. The proposed frequency synthesizer adopts a double-conversion architecture for simplicity and to mitigate spur suppression requirements for out-of-band interferers in 2.4 and 5 GHz bands. Moreover, the frequency synthesizer can consist of the fewest nonlinear components, such as divide-by-Ns and a mixer with the proposed frequency plan, leading to the generation of less spurs. To evaluate the feasibility of the proposed idea, the frequency synthesizer block is implemented in 0.18-${\mu}m$ CMOS technology. The measured sideband suppression ratio is about 32 dBc, and the phase noise is -105 dBc/Hz at an offset of 1 MHz. The fabricated chip consumes 17.6 mA from a 1.8 V supply, and the die-area including pads is $0.9{\times}1.1\;mm^2$.

  • PDF

Integratable Micro-Doherty Transmitter

  • Lee, Jae-Ho;Kim, Do-Hyung;Burm, Jin-Wook;Park, Jin-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권4호
    • /
    • pp.275-280
    • /
    • 2006
  • We propose Doherty power amplifier structure which can be integrated in Silicon RF ICs. Doherty power amplifiers are widely used in RF transmitters, because of their high Power Added Efficiency (PAE) and good linearity. In this paper, it is proposed that a method to replace the quarter wavelength coupler with IQ up-conversion mixers to achieve 90 degree phase shift, which allows on-chip Doherty amplifier. This idea is implemented and manufactured in CMOS 5 GHz band direct-conversion RF transmitter. We measured a 3dB improvement output RF power and linearity.

Structure-related Characteristics of SiGe HBT and 2.4 GHz Down-conversion Mixer

  • Lee, Sang-Heung;Kim, Sang-Hoon;Lee, Ja-Yol;Bae, Hyun-Cheol;Lee, Seung-Yun;Kang, Jin-Yeong;Kim, Bo-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권2호
    • /
    • pp.114-118
    • /
    • 2006
  • In this paper, the effect of base and collector structures on DC, small signal characteristics of SiGe HBTs fabricated by RPCVD was investigated. The structure of SiGe HBTs was designed into four types as follows: SiGe HBT structures which are standard, apply extrinsic-base SEG selective epitaxial growth (SEG), apply selective collector implantation (SCI), and apply both extrinsic-base SEG and SCI. We verified the devices could be applied to the fabrication of RFIC chip through a fully integrated 2.4 GHz down-conversion mixer.

$0.18{\mu}m$ CMOS 저 잡음 LDO 레귤레이터 (A Low-Noise Low Dropout Regulator in $0.18{\mu}m$ CMOS)

  • 한상원;김종식;원광호;신현철
    • 대한전자공학회논문지SD
    • /
    • 제46권6호
    • /
    • pp.52-57
    • /
    • 2009
  • 본 논문은 CMOS RFIC 단일 칩을 위한 Bandgap Voltage Reference와 이를 포함한 저 잡음 Low Dropout (LDO) Regulator 회로에 관한 것이다. 저 잡음을 위해 Bandgap Voltage Reference에 사용된 BJT 다이오드의 유효면적을 증가시켜야 함을 LDO의 잡음해석을 통해 나타내었다. 이를 위해 다이오드를 직렬 연결하여 실리콘의 실제면적은 최소화 하면서 다이오드의 유효면적을 증가시키는 방법을 적용하였고, 이를 통해 LDO의 출력잡음을 줄일 수 있음을 확인하였다. $0.18{\mu}m$ CMOS 공정으로 제작된 LDO는 입력전압이 2.2 V 에서 5 V 일때 1.8 V의 출력전압에서 최대 90 mA의 전류를 내보낼 수 있다. 측정 결과 Line regulation은 0.04%/V 이고 Load regulation은 0.45%를 얻었으며 출력 잡음 레벨은 100 Hz와 1 kHz offset에서 각각 479 nV/$^\surd{Hz}$와 186 nV/$^\surd{Hz}$의 우수한 성능을 얻었다.