• Title/Summary/Keyword: RF-magnetron sputter

Search Result 278, Processing Time 0.028 seconds

Influence of Ag Thickness on Electrical and Optical Properties of AZO/Ag/AZO Multi-layer Thin Films by RF Magnetron Sputtering (RF magnetron sputter에 의해 제조된 AZO/Ag/AZO 다층박막의 Ag 두께가 전기적 광학적 특성에 미치는 영향)

  • An Jin-Hyung;Kang Tea-Won;Kim Dong-Won;Kim Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • Al-doped ZnO(AZO)/Ag/AZO multi-layer films deposited on PET substrate by RF magnetron sputtering have a much better electrical properties than Al-doped ZnO single-layer films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the optimum thickness of Ag layers was determined to be $112{\AA}$ for high optical transmittance and good electrical conductivity. With about $1800{\AA}$ thick AZO films, the multi-layer showed a high optical transmittance in the visible range of the spectrum. The electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. A high quality transparent electrode, having a resistance as low as $6\;W/{\square}$ and a high optical transmittance of 87% at 550 nm, was obtained by controlling Ag deposition parameters.

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF

Effect of Negative Oxygen Ions Accelerated by Self-bias on Amorphous InGaZnO Thin Film Transistors

  • Kim, Du-Hyeon;Yun, Su-Bok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.466-468
    • /
    • 2012
  • Amorphous InGaZnO (${\alpha}$-IGZO) thin-film transistors (TFTs) are are very promising due to their potential use in thin film electronics and display drivers [1]. However, the stability of AOS-TFTs under the various stresses has been issued for the practical AOSs applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the ${\alpha}$-IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of ${\alpha}$-IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of ${\alpha}$-IGZO thin film. In this paper, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in ${\alpha}$-IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of ${\alpha}$-IGZO TFTs by this new deposition method.

  • PDF

Ferroelectric Properties of SBT Thin Films Deposited by RF Magnetron Sputering Method (RF 마그네트론 스퍼터링법에 의한 SBT 박막의 강유전체 특성)

  • 조춘남;김진사;최운식;박용필;김충혁
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.731-735
    • /
    • 2001
  • S $r_{0.89}$B $i_{2.4}$T $a_2$ $O_{9}$ (SBT) thin films are deposited on Pt-coated electrode(Pt/Ti $O_2$/ $SiO_2$/Si) using RF magnetron sputtering method. In the XRD pattern, the SBT thin films had (105) orientation. As annealing temperature was increased from $600^{\circ}C$ to 85$0^{\circ}C$, the intensities of peak were increased. In the SEM images, Bi-layered perovskite phase was crystallized above $650^{\circ}C$ and rod-like grains grew above 75$0^{\circ}C$. The maximum remanent polarization and the coercive electric field at annealing temperature of 75$0^{\circ}C$ are 11.60$\mu$C/$\textrm{cm}^2$ and 48kV/cm respectively. The dielectric constant and leakage current density at annealing temperature of 75$0^{\circ}C$ are 213 and 1.01x10$^{-8}$ A/$\textrm{cm}^2$, respectively. The fatigue characteristics of SBT thin filmsdid not change up to 10$^{10}$ switching cycles.s.s.

  • PDF

Fabrication of a SAW Filter Using a ZnO Thin Film deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착된 ZnO 박막 SAW 필터의 제작)

  • Jung, Eun-Ja;Jang, Cheol-Yeong;Jung, Young-Chul;Choi, Hyun-Chul;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.141-144
    • /
    • 2003
  • This study proposes ZnO thin film as a piezoelectric material for SAW (surface acoustic wave) filter. The ZnO thin film with thickness $2.6{\mu}m$ was deposited (0001)-oriented sapphire by RF magnetron sputtering technique. IDTs (inter-digital transducers) electrodes were patterned upon SAW filter mask with solid finger structure unapodized using lift-off method on ZnO piezoelectric thin film. SAW propagation velocity was measured with the center frequency by HP 8753C network analyzer. A fabricated ZnO SAW filter exhibited a high propagation velocity of 5433 $^m/s$ and relatively insertion loss of -53.391dB at $\lambda=80{\mu}m$. The side-lobe attenuation of the center frequency was about 17dB. When the wavelength was $80{\mu}m$ $(\lambda/4=20{\mu}m)$, the center frequency was 67.907 MHz. $k^2$ (electromechanical coupling coefficient) was 15.84 %.

  • PDF

Crystalline Properties of Carbon Nitride films According to Substrates and Growth Conditions (기판과 성장조건에 따른 질화탄소막의 결정성장 특성)

  • 이지공;이성필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1103-1109
    • /
    • 2003
  • Crystalline carbon nitride films have been deposited by RF reactive magnetron sputtering system with negative DC bias. The carbon nitride films deposited on various substrates showed ${\alpha}$- C$_3$N$_4$,${\beta}$-C$_3$N$_4$ and lonsdaleite structures through XRD and FTIR We can find the grain growth of hexagonal structure from SEMI photographs, which is coincident with the theoretical carbon nitride unit cell. When nitrogen gas ratio is 70 % and RF power is 200 W, the growth rate of carbon nitride film on quartz substrate is about 2.1 $\mu\textrm{m}$/hr.