• Title/Summary/Keyword: RF sensitivity

Search Result 222, Processing Time 0.033 seconds

Association of Diagnostic Criteria and Autoantibodies with Juvenile Dermatomyositis in Newly Diagnosed Children (소아기 피부근염의 진단 기준과 자가항체의 진단적 의의)

  • Shin, Kyung Sue;Kim, Joong Gon
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.9
    • /
    • pp.898-902
    • /
    • 2003
  • Purpose : To determine the clinical association of diagnostic criteria and the prevalence of autoantibodies in newly diagnosed children with juvenile dermatomyositis(JDM). Methods : Thirty-two children with JDM were identified at Seoul National University Children's Hospital from March 1985 to March 1999 by retrospective review. The diagnosis of JDM was based on the criteria proposed by Bohan and Peter. We investigated for the presence of several autoantibodies: antinuclear(ANA), double-stranded DNA, anti-Sm, anti-ribonucleoprotein(RNP), anti-SSA/ SSB, anti-Jo1, anti-Scl-70 antibodies and rheumatoid factor(RF). Results : Sex ratio and age at diagnosis were similar to data published in other studies. All the newly diagnosed children with JDM had a typical rash(100%) and proximal muscle weakness(100%); 17(53%) had muscle pain or tenderness; 10(31%) calcinosis; eight(25%) dysphagia; eight(25%) arthritis, and seven(22%) fever. Muscle enzymes were elevated in 90% of the patients. Of the 27 patients who had an electromyogram, 20(70%) had diagnostic results. Sixteen(70%) of biopsied patients had appropriated results for JDM. Patients were negative for all autoantibodies except ANA and RF. ANA and RF were detected in 47% and 7% of the patients respectively. Conclusion : Although the sensitivity of the criteria proposed by Bohan and Peter is superior, each of these criteria has possible confounding factors. Additional criteria may be needed for early diagnosis of JDM. Based on our findings of autoantibodies in JDM, we do not recommend routine testing for autoantibodies in children with typical JDM.

Comparison of Physiological Variables by Age Group in Drinking Men (음주남성의 나이대별 생리학적 변수들의 비교)

  • Hyun, Kyung-Yae
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1374-1381
    • /
    • 2009
  • This study was designed to investigate the differences of physiological variables by age group in alcohol-consuming men. The thirty year old-age group had the lowest waist-hip ratio (WHR), right and left cardio-ankle vascular index (R-CAVI and L-CAVI), right and left ankle-brachial index (R-ABI and L-ABI), amylase, high sensitivity C-reactive protein (hs-CRP), and creatine phosphokinase (CPK) levels, and the highest body weight (BW), interleukin-6 (IL-6), right and left intraocular pressure (R-IP and L-IP), hematocrit (Hct), hemoglobin (Hb), erythrocyte, red blood cells distribution width (RDW), alanine aminotransferase (ALT), total cholesterol (TCH), triglyceride (TG), and ferritin levels. The forty year old-age group was the highest in hs CRp and CPK levels, but the lowest in ferritin level. The fifty year old-age group possessed the highest WHR, diastolic blood pressure (DBP), R- and L-ABI, eosinophil, and amylase levels. The sixty year old-age group had the highest R- and L-CAVI, mean corpuscular volume (MCV), ALP, $\gamma$-glutamyltranspeptidase ($\gamma$-GTP), rheumatoid factor (RF), $\alpha$-fetoprotein (AFP) and prostate specific antigen (PSA) levels and the lowest BW, DBP, R-IP, L-IP, Hct, Hb, leukocyte, platelet, RDW, eosinophil, monocyte, ALT, amylase, TG, and CPK levels. These findings indicate that there may be differences of physiological variables depending on age group in alcohol-consuming men. Further studies should be focused on the physiological differences between alcohol-consuming men and women.

Selective Mapping of Partial Tones (SMOPT) Scheme for PAR Reduction in OFDM Systems (OFDM 시스템에서 PAR을 줄이는 SMOPT 기법)

  • Yoo Seung soo;Yoon Seok ho;Kim Sun yong;Song Iick ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.230-238
    • /
    • 2005
  • An orthogonal frequency division multiplexing (OFDM) system consists of a number of independently modulated subcarriers and, thus, a high peak-to-average power ratio (PAR) can occur when the subcarriers are added coherently. The high PAR brings such disadvantages as an increased complexity of the analog-to-digital (ADC) and digital-to-analog (DAC) converters and a reduced efficiency of the radio frequency (RF) power amplifier. In this paper, we propose a novel PAR reduction scheme called selective mapping of partial tones (SMOPT). The SMOPT scheme has a reduced complexity, lower sensitivity to peak reduction tones (PRT) positions, and a shorter processing time as compared with the conventional tone reservation (TR) scheme. The performance of the SMOPT scheme is analyzed based on the IEEE 802.1la wireless local area network(WLAM) physical layer model. Numerical results show that the SMOPT scheme outperforms the TR scheme under various scenarios.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

NO Gas Sensing Characteristics of Layered Composites of Carbon Nanotubes Coated with Al-Doped ZnO (탄소나노튜브를 알루미늄이 첨가된 산화아연으로 코팅한 층상 복합체의 일산화질소 가스 감지 특성)

  • Ahn, Eun-Seong;Jung, Hoon-Chul;Nguyen, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.631-636
    • /
    • 2009
  • We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200${^{\circ}C}$ and a low NO gas detection limit of 0.2 ppm in dry air.

CCDP Evaluation of the Eire Area of NPPs Using Eire Model CEAST (화재모델 CFAST를 이용한 원전 화재구역의 CCDP평가)

  • Lee Yoon-Hwan;Yang Joon-Eon;Kim Jong-Hoon;Noh Sam-Kyu
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • This paper describes the result of the pump room fire analysis of the nuclear power plant using CFAST fire modeling code developed by NIST. The sensitivity studies are performed over the input parameters of CFAST: the constrained or unconstrained fire, Lower Oxygen Limit (LOL), Radiative Fraction (RF), and the opening ratio of the fire doors. According to the results, a pump room fire is the ventilation-controlled fire, so it is adequate that the value of LOL is 10% which is also the default value. It is anlayzed that the Radiative Fraction does not affect the temperature of the upper gas layer. It is appeared that the integrity of the cable located at the upper layer is maintained except for the safety pump at the fire area and the Conditional Core Damage Probability (CCDP) is 9.25E-07. It seems that CCDP result is more realistic and less uncertain than that of Fire Hazard Analysis (FHA).

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films (산화아연 나노구조 박막의 일산화탄소 가스 감지 특성)

  • Hung, Nguyen Le;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Physiological Responses of Rice Seedlings to Butachlor (Butachlor에 대한 벼 유묘의 생리적 반응)

  • Tsai, Wen-Fu
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.247-253
    • /
    • 1995
  • The herbicide butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-di-methylphenyl) acetamide] is widely used by farmers as a tool for weed management of transplanted rice(Oryza sativa L.) in Taiwan. The herbicide did not stop germination of rice and weed seeds, but strongly inhibited the subsequent growth of young shoots and roots. The inhibition was also strong on established seedlings. However, they could recover to normal growth after the herbicide effect disappeared. Butachlor greatly decreased the endogenous indole-3-acetic acid (IAA) but increased the endogenous abscisic acid (ABA) contents of rice seedlings. Addition of lAA into growth medium (Hoagland's solution) partly relieved growth inhibition. Pretreatment of both gibberellic acid ($GA_3$) and IAA 24 hours before butachlor treatment almost completely alleviated the butachlor-interfere with GA and/or IAA metabolism or their action resulting in the growth inhibition of rice. Butachlor was readily absorbed by rice roots. During 24 hours of uptake experiment, 32% of the applied herbicide was absorbed. Pretreatment of the herbicide for 2 days did ncx affect the absorption. Of the absorbed herbicide, 80% remained in roots, only 20% transported into shoots, and more than 50% was metabolized to water soluble substances. Thin-layer chromatographic (TLC) analysis indicated that the Rf value of the most abundant metabolite was butachlor-glutathione conjugate. Rice, barnyardgrass (Echinochloa crus-galli (L.) Beauv.), and monochoria (Monochoria vaginalis Presl) seedlings contained relatively high level of non-protein thiols, while the glutathione S-transferase (GST) activity was found highest in rice, barnyardgrass the next, monochoria the lowest. The difference in GST activity among these species might be related to their sensitivity to butachlor.

  • PDF

Design of W-Band Diode Detector (W-Band 다이오드 검출기 설계)

  • Choi, Ji-Hoon;Cho, Young-Ho;Yun, Sang-Won;Rhee, Jin-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.278-284
    • /
    • 2010
  • In this paper, a millimeter-wave detector using zero-bias schottky diode is designed and fabricated at W-band. It consists of LNA(Low Noise Amplifier) and detector module to improve sensitivity. LNA case with a highly stop-band characteristic is designed to prevent the oscillation by LNA MMIC chip. Diode detector of planar structure is fabricated for the easy connection with LNA module and zero bias Schottky diode is utilized. In practice, the fabricated diode detector have shown the detection voltage of 20~500 mV to the RF input power of -45~-20 dBm. The proposed W-band detector can be applicable to the passive millimeter image system.

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.