DOI QR코드

DOI QR Code

NO Gas Sensing Characteristics of Layered Composites of Carbon Nanotubes Coated with Al-Doped ZnO

탄소나노튜브를 알루미늄이 첨가된 산화아연으로 코팅한 층상 복합체의 일산화질소 가스 감지 특성

  • Ahn, Eun-Seong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Hoon-Chul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Nguyen, Nguyen Le (Department of Materials Science and Engineering, Chungnam National University) ;
  • Oh, Dong-Hoon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 안은성 (충남대학교 공과대학 재료공학과) ;
  • 정훈철 (충남대학교 공과대학 재료공학과) ;
  • 웬래홍 (충남대학교 공과대학 재료공학과) ;
  • 오동훈 (충남대학교 공과대학 재료공학과) ;
  • 김효진 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Published : 2009.11.27

Abstract

We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200${^{\circ}C}$ and a low NO gas detection limit of 0.2 ppm in dry air.

Keywords

References

  1. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology, 17, 4995 (2006) https://doi.org/10.1088/0957-4484/17/19/037
  2. A. S. Zuruki, A. Kolmalov, N. C. Macdonald and M. Moskovits, Appl. Phys. Lett., 88, 102904 (2006) https://doi.org/10.1063/1.2185247
  3. H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse and X. Yao, Appl. Phys. Lett., 87, 163123 (2005) https://doi.org/10.1063/1.2106006
  4. Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, Y. T. Kim, J. T. Park, C. H. Lee, J. Choi, J. Park and K. Lee, Appl. Phys. Lett., 86, 213105 (2005) https://doi.org/10.1063/1.1929872
  5. T. Seiyama, A. Kato and M. Nagatani, Anal. Chem., 34, 1502 (1962) https://doi.org/10.1021/ac60191a001
  6. N. Koshizaki and T. Oyama, Sens. Actuators B, 66, 119 (2000) https://doi.org/10.1016/S0925-4005(00)00323-3
  7. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil and L. A. Patil, Sens. Actuators B, 115, 128 (2006) https://doi.org/10.1016/j.snb.2005.08.030
  8. S. Basu and A. Dutta, Sens. Actuators B, 22, 83 (1994) https://doi.org/10.1016/0925-4005(94)87004-7
  9. J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, Sens. Actuators B, 84, 258 (2002) https://doi.org/10.1016/S0925-4005(02)00034-5
  10. Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sens. Actuators B, 93, 435 (2003) https://doi.org/10.1016/S0925-4005(03)00170-9
  11. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sens. Actuators B, 66, 277 (2000) https://doi.org/10.1016/S0925-4005(00)00381-6
  12. T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005) https://doi.org/10.1007/s00339-004-3075-2
  13. Z. Fan and J. G. Lu, J. Nanosci. Nanotech., 5, 1561 (2005) https://doi.org/10.1166/jnn.2005.182
  14. A. O. Dikovska, Sens. Actuators A, 140, 19 (2007) https://doi.org/10.1016/j.sna.2007.05.032
  15. S. M. Park, S. L. Zhang and J. H. Huh, Kor. J. Mater. Res., 18, 367 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.7.367
  16. J. Kong, N. R. Franklin, C. Zhou, M. C. Chapline, S. Peng, J. Cho and H. Dai, Science, 287, 622 (2000) https://doi.org/10.1126/science.287.5453.622
  17. P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science, 287, 1801 (2000) https://doi.org/10.1126/science.287.5459.1801
  18. A. Wisitsoraat, A. Tuantranont, C. Thanachyanont and P. ingjai, in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (Zhuhai, China, January 2006), p. 1487 https://doi.org/10.1109/NEMS.2006.334813
  19. K. H. An, S. Y. Jeong, H. R. Hwang and Y. H. Lee, Adv. Mater., 16, 1005 (2004) https://doi.org/10.1002/adma.200306176
  20. T. Ikuno, T. Yasuda, S. Honda, K. Oura, M. Katayama, J. G. Lee and H. Mori, J. Appl. Phys., 98, 114305 (2005) https://doi.org/10.1063/1.2035891
  21. J. Jung, H. Song, Y. Kang, D. Oh, H. Jung, Y. Cho and D. Kim, Kor. J. Mater. Res., 18, 529 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.10.529
  22. S. Y. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 655 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.12.655
  23. S. Ahlers, G. Muller and Th. Doll, in Encyclopedia of Sensors, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006)
  24. H. Nanto, T. T. Minami and S. Tanaka, J. Appl. Phys., 60, 482 (1986) https://doi.org/10.1063/1.337435
  25. L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun and J. Lin, Appl. Phys. Lett., 87, 222106 (2005) https://doi.org/10.1063/1.2136070
  26. Y. Kang, D. Oh, H. Song, J. Jung, H. Jung, Y. Cho and D. Kim, Kor. J. Mater. Res., 18, 253 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.5.253
  27. M. Birkholz, Thin Film Analysis by X-ray Scattering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006
  28. R. W. J. Scott, S. M. Yang, G. Chabanis, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001) https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  29. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006) https://doi.org/10.1016/j.snb.2005.07.058
  30. D. R. Patil and L. A. Patil, Sens. Actuators B, 123, 546 (2007) https://doi.org/10.1016/j.snb.2006.09.060

Cited by

  1. Zinc Oxide Wire-Like Thin Films as Nitrogen Monoxide Gas Sensor vol.25, pp.7, 2015, https://doi.org/10.3740/MRSK.2015.25.7.358