• Title/Summary/Keyword: RF co-sputtering

Search Result 302, Processing Time 0.035 seconds

Properites of transparent conductive ZnO:Al film prepared by co-sputtering

  • Ma, Hong-Chan;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.106-106
    • /
    • 2009
  • Al-doped ZnO (AZO) thin films were grown on glass substrates by co-sputtering at room temperature. We made ZnO and Al target and ZnO:Al film is deposited with sputter which has two RF gun source. The Al content was controlled by varying Al RF power and effect of Al contents on the properties of ZnO:Al film was investigated. Crystallinity and orientation of the ZnO:Al films were investigated by X-ray diffraction (XRD), surface morphology of the ZnO:Al films was observed by atomic force microscope. Electrical properties of the ZnO:Al films were measured at room temperature by van der Pauw method and hall measurement. Optrical properties of ZnO:Al films were measured by UV-vis-NIR spectrometer.

  • PDF

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

Optical Emission Spectroscopy with Parameters During R.F. Discharge of BaTiO3 Target (BaTiO3 타겟의 R.F. 방전 중 변수에 따른 광반사분광 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.509-514
    • /
    • 2011
  • In this study, optical emission spectroscopy was used to monitor the plasma produced during the RF magnetron sputtering of a $BaTiO_3$ target. The intensities of chemical species were measured by real time monitoring with various discharge parameters such as RF power, pressure, and discharge gas. The emission lines of elemental and ionized species from $BaTiO_3$ and Ti targets were analyzed to evaluate the film composition and the optimized growth conditions for $BaTiO_3$ films. The emissions from Ar(I, II), Ba(I, II) and Ti(I) were found during sputtering of the $BaTiO_3$ target in Ar atmosphere. With increasing RF power, all the line intensities increased because the electron density increased with increasing RF power. When the Ar pressure increased, the Ba(II) and Ti(I) line intensity increased, but the $Ar^+$ line intensity decreased with increasing pressure. This result shows that high pressure is of greater benefit for the ionization of Ba than for that of Ar. Oxygen depressed the intensity of the plasma more than Ar did. When the Ar/$O_2$ ratio decreased, the intensity of Ba decreased more sharply than that of Ti. This result indicates that the plasma composition strongly depends on the discharge gas atmosphere. When the oxygen increased, the Ba/Ti ratio and the thickness of the films decreased. The emission spectra showed consistent variation with applied power to the Ti target during co-sputtering of the $BaTiO_3$ and Ti targets. The co-sputtered films showed a Ba/Ti ratio of 1.05 to 0.73 with applied power to the Ti target. The films with different Ba/Ti ratios showed changes in grain size. Ti excess films annealed at $600^{\circ}C$ did not show the second phase such as $BaTi_2O_5$ and $TiO_2$.

Magneto-Optical Properties of Co-based MnSbPt Thin Films Prepared by RF Magnetron Sputtering (RF Magnetron Sputtering 으로 제작된 Co-based MnSbPt 합금박막의 자기광학적 성질)

  • Yun, Hyeon-Muk;Hong, Yeon-Gi;Lee, Gyeong-Jae;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.195-199
    • /
    • 1998
  • Magnetic and Magneto-Optical properties of Co-based MnSbPt thin films prepared by R.F Sputtering were investigated. In this study, the optimum heat treatment condition was found to be $300^{\circ}C$-4hours under a $5\times10^{-6}$ Torr, but perpendicularly magnetized thin films could not be obtained. Coercive force showed maximum value of about 5000e at $250\AA$ Co thickness but the value is not enough for practical use of the thin film. Heat treated Co-based MnSbPt thin film shows 0.78 degree of Kerr rotation angle for 700nm of incident wavelength.

  • PDF

In-situ Annealing of $MgB_2$ Thin Films Prepared By rf Magnetron Co-Sputtering (Rf co-sputtering으로 제작한 MgB$_2$ 박막의 in-situ 열처리 효과)

  • 김윤원;안종록;이순걸;이규원;김인선;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.105-108
    • /
    • 2004
  • We have studied effects of in-situ annealing on the fabrication of superconducting MgB$_2$ thin films prepared by rf magnetron co-sputtering. The Films were deposited on A1$_2$O$_3$ (1102) substrates at room temperature by using Mg and B targets. To trap remnant $O_2$ gas in the chamber, we used 20 mtorr Af sputter-gas balanced with 5 mol % of H$_2$ gas. To enhance adhesion to the substrate a thin layer of B was deposited prior to the codeposition of Mg and B. After completion of the film deposition, an additional Mg layer was deposited on top to compensate for Mg loss during the subsequent in-situ annealing. We have investigated the effects of two most important annealing parameters that are the Mg-to-B composition ratio and the annealing temperature. The range of the Mg-to-B composition ratio was from 0.42 to 0.85, and that of the annealing temperature was 500 $^{\circ}C$∼750 $^{\circ}C$. The Best result was obtained for the composition ratio of about 10% Mg excess from the stoichiometry and the annealing temperature of 700 $^{\circ}C$. Based on these results, we obtained films with T$_{c}$ : 36.5 K by further refining the fabrication process.s.

  • PDF

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

Fluorine doping effect of ZnO film by RF magnetron sputtering (RF magnetron sputtering을 이용한 ZnO 박막의 F 도핑 효과)

  • Ku, Dae-Young;Kim, In-Ho;Lee, In-Kyu;Lee, Kyeong-Seok;Park, Jong-Keuk;Lee, Taek-Sung;Baik, Young-Jun;Cheong, Byung-Ki;Kim, Won-Mok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1023-1028
    • /
    • 2004
  • RF magnetron sputtering을 이용하여 증착한 투명전도성 ZnO 박막의 F 도핑량에 따른 전기, 구조, 광학적 특성에 대해 고찰하였다. 순수 ZnO와 ZnO : $ZnF_2$(1.3 wt%) 그리고 ZnO : $ZnF_2$(10 wt%) 3개의 타겟들을 2개씩 조합 각각의 rf 파워를 조절하여 co-sputtering 방법으로 $ZnF_2$ wt%를 변화시켜 박막내의 F 도핑량을 조절하였다. 증착된 박막들은 열처리에 따른 물성 변화를 분석하기 위해 $5{\times}10^{-7}$ torr 이하의 진공 분위기에서 $300^{\circ}C$에서 2 시간 동안 열처리하였다. XRD 분석 결과 제작된 모든 ZnO 박막은 (002) 우선 방위 특성을 보였고 F 도핑량 증가에 따라 (101), (110), (100) 방향의 약한 피크들이 나타났으며, 이러한 구조적 특성 변화는 이동도의 변화와 밀접한 관계가 있는 것으로 나타났다. Auger로 박막 내의 F 량을 분석한 결과 최대 5.9 at%의 F이 포함되어 있었으며, 열처리 후 캐리어 농도와 이동도는 증가하였고 최고 $37cm^2/Vs$의 이동도를 나타내었으며, 모든 박막들은 가시광 영역에서 81 % 이상의 투과도를 가졌다.

  • PDF

Light Sensing Characteristics of $BaAl_2O_4$ thin film by RF magnetron sputtering (RF 마그네트론 스퍼터링에 의한 $BaAl_2O_4$:Eu 박막의 광센싱 특성)

  • Kim, Sei-Ki;Kang, Jung-Woo;Kwak, Chang-Gon;Ji, Mi-Jung;Choi, Byung-Hyun;Kim, Young-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.54-54
    • /
    • 2008
  • $Eu^{2+}$, $Nd^{3+}$ co-doped $BaAl_2O_4$ are known as a long afterglow phosphor. We found that $Eu^{2+}$-doped $BaAl_2O_4$ showed ptotoconductivity in the range of UV and visual light. In this study, $BaAl_2O_4$:Eu thin film has been prepared by RF sputtering method and a sensing characteristics to UV and visual light was performed. Only $Eu^{2+}$ and $Nd^{3+}$ co-doped $BaAl_2O_4$ powders and targets for deposition were prepared by a convention solid state method, and the deposition was performed in a reducing $H_2$-Ar mixture gas on Si substrates. The observation of crystalline phase and morphology of the sputtered film were performed using XRD, EDX. The photoluminescence and photocurrent to UV and visual light were measured simultaneously using 300W-Xe solar simulator as a light source. It was confirmed that the photocurrent induced by irradiation of light showed a linear relationship to the light intensity.

  • PDF

Effects of Deposition Conditions on Properties of CuNi thin Films Fabricated by Co-Sputtering of Dual Targets (이중 타겟의 동시 스퍼터링을 이용한 CuNi 박막 제작시 증착변수가 박막의 물성에 미치는 영향)

  • Seo, Soo-Hyung;Lee, Jae-Yup;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.11-16
    • /
    • 2001
  • CuNi alloy films are deposited by co-sputtering of dual targets (Cu and Ni, respectively). Effects of the co-sputtering conditions, such as powers applied to the targets, deposition pressures, and substrate temperatures, on the structural and electrical properties of deposited films are systematically investigated. The composition ratio of Ni/Cu is almost linearly decreased by increasing the DC power applied to the Cu target from 25.6 W to 69.7 W with the RF power applied to the Ni target unchanged(140 W). it is noted that the chamber pressure during deposition and the film thickness give rise to a change of the Ni/Cu ratio within the films deposited. The former may be due to a higher sputtering yield of Cu atom and the latter due to the re-sputtering phenomenon of Cu atoms on the surface of deposited film. The film deposited at higher pressures or at lower substrate temperatures have a smaller crystallite size, a higher electrical resistivity, and much more voids. This may be attributed to a lower surface mobility of sputtered atoms over the substrate.

  • PDF