• Title/Summary/Keyword: RED LEDs

Search Result 223, Processing Time 0.029 seconds

Effect of RED and FAR-RED LEDs on the Fruit Quality of 'Hongro'/M.26 Apple (적색과 초적색 LEDs 보광이 '홍로'/M.26 사과의 과실품질에 미치는 영향)

  • Kang, Seok-Beom;Song, Yang-Yik;Park, Moo-Yong;Kweon, Hun-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • BACKGROUND: As improved LEDs (Light Emitting Diode) industry and decreased the price of LEDs in Korea, some farmers try to using the RED LEDs in green house and open field to increase the production of crop under bad weather condition. The aim of this study is to find out the effect of RED and FAR-RED LEDs lighting on the fruit quality of twelve-year old 'Hongro'/M.26 apple during night after sunset. METHODS AND RESULTS: FAR-RED (730nm, 2 and 4 hour) and RED (620nm, 2 and 4 hour) with 20 LED/PCB were treated in orchard for 16 weeks from June 10 to October 10 in 2009 and 2010 with control as an comparison. In our experiments, leaf weight was significantly higher in RED LEDs than control, tended to be decreased as times of FAR-RED lighting increased. Fruit weight was increased more in RED LEDs than control in 2009 and 2010, but decreased in FAR-RED lighting compared to control in 2010. Firmness and Hunter's a value of fruit were increased in FAR-RED lighting with 2 and 4 h than control. Soluble solid contents were higher in 2 h RED and 2, 4 h FAR-RED LEDs compared to control in 2009, there was no significant difference in 2010. Acid contents were no difference among the treatments. CONCLUSION(S): In our results, we found that RED LEDs was more helpful to increase the fruit weight and FAR-RED LEDs promote to be higher hunter a value of fruit skin. So, we thought that it is necessary to more study if mixed of RED and FAR-RED lighting is more helpful to promote fruit quality of 'Hongro' apple than single lighting of RED or FAR-RED LEDs respectively.

Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs - (인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF

Search for new red phosphors under NUV/blue excitation - the stimulating future for solid state lighting

  • Vaidyanathan, Sivakumar;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1350-1352
    • /
    • 2008
  • Research on down conversion phosphor materials is the key for the development of solid state lighting (SSL). Especially finding alternative red phosphor for white LEDs based on blue or NUV LEDs are important research task. Under this view, we have synthesized a series of $Eu^{3+}$ substituted $La_2W_{2-x}Mo_xO_9$ (x = 0 ~ 2, insteps of 0.1) red phosphor and characterized by X-ray diffraction (XRD) and photoluminescence. XRD results reveal a phase transition from triclinic to cubic structure for $x\;{\geq}\;0$. All the compositions show broad charge transfer band due to charge transfer from oxygen to tungsten/molybdenum and red emission due to $Eu^{3+}$ ions. Select compositions show high red emission intensity compared to the commercial red phosphor under NUV/blue ray excitation. Hence, this candidate can be possible red emitting phosphors for white LEDs.

  • PDF

Study for Cultivation of Chlorella sp. FC-21 under Different Colors of Light Emitting Diodes (LEDs) (발광다이오드 색상별 클로렐라 배양 특성 연구)

  • Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.31-35
    • /
    • 2011
  • The purpose of this study was to determine optimum condition for the cultivation of Chlorella sp. FC-21, which is a freshwater microalgae, using light emitting diodes (LEDs). Specific growth rate and cell concentration were measured for the reactors at the illumination of different wavelengths of LEDs. Among various types of LEDs, red LEDs were the most effective light source, and also greatest increases of specific growth rate and cell concentrations were obtained when light intensity of red LEDs increased. From this study, we found that red LEDs were the most appropriate light source for the cultivation of Chlorella sp. FC-21.

Promoted Growth and Development of Carnation Plantlets In Vitro by Ventilation and Combined Red and Blue Light

  • Nguyen, Quan Hoang;Thi, Luc The;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.166-178
    • /
    • 2018
  • In this study, the principal objective was to investigate the effect of light quality and vessel ventilation on the growth and development, physiology, activities of antioxidant enzymes, and contents of mineral nutrients of carnation (Dianthus caryophyllus L.) 'Marble Beauty'. Single node cuttings stuck into the plant growth regulator (PGR)-free MS medium in containers covered with caps with or without a ventilation filter were cultured first four weeks under white and then additional four weeks under either white (control), blue, red, or red + blue light emitting diodes (LEDs) for 56 days. Interestingly, a ventilated culture condition not only reduced the percentage of the hyperhydricity, but also increased the total chlorophyll content (Chl a + Chl b) of the plantlets as compared to the non-ventilated condition. In addition, blue LEDs produced plantlets with the greatest number of shoots and red LEDs produced plantlets with the greatest shoot length. The quality of plantlets was improved under a ventilation condition. Besides, under a ventilated condition, red + blue LEDs raised APX activity, and blue LEDs not only raised the activity of the CAT, but also increased tissue contents of such elements as K, Ca, Mg, Zn, Mn and Fe. The red LEDs increased contents of B and Si under a ventilated condition, and Na accumulation under a non-ventilated condition. Thus, including blue or red LEDs as the light source in a ventilated culture condition will produce plantlets of carnation 'Marble Beauty' in vitro with improved quality.

Effects of light-emitting diodes on protoplast regeneration from gametophytic cells of the commercial kelp Undaria pinnatifida (Laminariales, Phaeophyceae)

  • Avila-Peltroche, Jose;Won, Boo Yeon;Cho, Tae Oh
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.163-174
    • /
    • 2022
  • Light-emitting-diodes (LEDs) are a lighting source useful for the precise evaluation of light quality effect on biological systems. Despite the importance of light spectra on the regeneration of land plant protoplasts ("naked cells"), this factor has not been tested yet on protoplasts from multicellular algae. This study reports on the effects of pure primary colors (red, blue, and green), dichromatic (red plus blue, RB, 1 : 2) and white LEDs on protoplast regeneration from male and female Undaria pinnatifida gametophytes. We also evaluated the effect of different light spectra on pigment composition (chlorophyll a, chlorophyll c, and fucoxanthine), and the light intensities under the best condition on the regeneration process. In the early stages, blue or RB LEDs increased the percentage of dividing female protoplasts, whereas red, blue, and RB LEDs enhanced that of dividing male protoplasts. In the later stages, RB LEDs showed a positive effect only on the percentage of multiple rhizoid-like protrusions (male gametophyte). They also increased the final area of both regenerated gametophytes. The LEDs did not affect pigment composition in female gametophytes. In male gametophytes, in contrast, they reduced chlorophyll c, while blue, RB, and green LEDs decreased fucoxanthin. Under RB LEDs, the optimal light intensity was 80 µmol photons m-2 s-1 for female gametophytes and 40 to 60 µmol photons m-2 s-1 for male gametophytes. Our results suggest that dichromatic LED illumination (red-blue) improves regeneration of U. pinnatifida gametophyte-isolated protoplasts. Thus, dichromatic LEDs might a suitable light source for enhancing protoplast regeneration in brown seaweeds.

Cultivation of Chlorella Sp. Using Light Emitting Diode (발광다이오드를 이용한 클로렐라 배양 연구)

  • Lee, Tae-Yoon;Choi, Bo-Ram;Lee, Jea-Keun;Lim, Jun-Heok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.591-597
    • /
    • 2011
  • The purpose of this study was to determine optimum conditions for the cultivation of Chlorella sp. FC-21 using light emitting diodes (LEDs). Specific growth rate and cell concentration were measured for the reactors at the illuminations of different wavelengths of LEDs. Among various types of LEDs, red LEDs were the most effective light source, and also greatest increases of specific growth rate and cell concentrations were obtained when light intensity of red LEDs increased. The specific growth rate decreased when initial cell concentration increased due to the shading effect of each cell in the reactor. To determine beneficial effect of aeration to cell cultivation, micro-air bubbles were aerated at 0.35 vvm in the reactor at the illumination of red LEDs. Two and ten times greater specific growth rate and cell concentration were obtained when aeration was applied. From this study, we found that red LEDs with aeration were the most appropriate light source for the cultivation of Chlorella sp. FC-21.

Effects of Light Emitting Diodes on Growth and Morphogenesis of in vitro Seedlings in Platycodon grandiflorum (도라지 배양묘의 생장 및 형태형성에 미치는 발광다이오우드의 효과)

  • 은종선;김영선;김용현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.71-75
    • /
    • 2000
  • To clarify the possibility of plant production under red, green. blue, and red+blue using light emitting diodes (LEDs) and fluorescent lamps (control), the effects of light quality on the growth and morphogenesis of in vitro seedlings in Piatycodon grandiflorum were examined. The plantlets grown under the LEDs resulted in taller plants with greater stem than fluorescent lamps. The shortest shoot length, 3.8 cm, was observed in the control and the longest one, 13.4 cm, in the red light. But the shoot length was 5.6 cm under red LED with supplemental blue(red+blue light). This results indicate that red LED may be suitable, in proper combination with other wavelengths of light. The root length under red light was significantly smaller among the treatments. The plantlets grown under red+blue light had lower shoot dry weight, higher dry matter than other lights-grown plantlets. Among the various growth parameters measered, there was an indication that leaf area was controlled by the LEDs. Leaf area of a plantlets developing under green light was about 2.4 times wider than that of plantlets grown under red LED (10.1 $\textrm{cm}^2$ in area). The dry matter rate per plantlet among the treatments was greater in plantlets grown under the red/blue LEDs in comparison with that grown under other LEDs. Chlorophyll contents in plantlets grown under the red, green, blue and red/blue LEDs were 2%, 7% 20% and 10% lower, respectively, than those in plant grown under fluorescent lamps.

  • PDF

Effects of Pre Harvest Light Treatments (LEDs, Fluorescent Lamp, UV-C) on Glucosinolate Contents in Rocket Salad (Eruca sativa) (수확 전 LED, 형광등, UV-C 조사가 로켓 샐러드 내 글루코시놀레이트 함량에 미치는 영향)

  • Lee, Hye-Jin;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.178-187
    • /
    • 2017
  • The aim of this study was to investigate the effect of different light sources on the levels of glucosinolates (GSLs) in rocket salad (Eruca sativa L.). The light sources used in the study were: natural light (Control-1 or 2), red light-emitting diodes(LEDs), blue LEDs, mixed red and blue LEDs (R+B LEDs), white LEDs, fluorescent lamps (FL), and fluorescent lamps plus UV-C (FL+UV-C). Two separate experiments were conducted [Experiment I: Control-1, Red LED, Blue LED, Mix (R+B) LED and Experiment II: Control-2, White LED, FL, FL+UV-C] because of the limited number of growth chambers in our laboratory. The rate of increase in the length of rocket salad leaves was the highest under red LEDs and, FL confirming that red LED and, FL affect the growth of rocket salad. We separated and identified seven types of GSLs from the rocket salad:glucoraphanin, diglucothiobeinin, glucoerucin, glucobrassicin, dimeric 4-mercaptobutyl GSL, 4-methoxyglucobrassicin, and gluconasturtiin. The highest total GSL contents in Eexperiment I was found in plants grown under in red LEDs ($4.30{\mu}mol{\cdot}g^{-1}\;dry$ weight, DW), and the lowest under blue LEDs ($0.17{\mu}mol{\cdot}g^{-1}\;DW$). The highest total GSL contents in Experiment II was found in plants grown under FL ($13.45{\mu}mol{\cdot}g^{-1}\;DW$), and the lowest in FL+UV-C ($0.39{\mu}mol{\cdot}g^{-1}\;DW$). Especially in Experiment II, the content of dimeric 4-mercaptobutyl, which has a strong aroma and spicy flavor in rocket salad, was higher under FL and white LEDs than in Control-2, increasing by approximately 14.9 and 3.2-fold respectively. Therefore, light sources such as red LEDs, white LEDs and FL affected the accumulation of GSLs in rocket salad.

Effect of Red LEDs during Healing and Acclimatization Process on the Survival Rate and Quality of Grafted Tomato Seedlings (토마토 접목묘의 순화과정에서 적색LED광조사가 접목 활착율과 묘소질에 미치는 영향)

  • Vu, Ngoc-Thang;Kim, Young-Shik;Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • This study was designed to determine the effect of red LEDs during healing and acclimatization process on the survival rate and quality of grafted tomato seedlings. Red LEDs and no light (darkness) were used for treating three rootstock cultivars, which are 'B-Blocking', 'Kanbarune', 'High-power' in healing room. Results showed that survival rates of grafted seedlings in red LEDs were higher than those in no light treatment. Significant variation on survival rates of rootstock cultivars was observed in no light treatment but there was not significant variation in red LEDs treatment. Light treatment also reduced the percentage of infected plants, except for the 'Kanbarune' cultivar. Seedling quality in red LEDs was better than that in no light treatment by improving growth parameters such as plant height, leaf length, leaf width, leaf area, fresh and dry weight of shoot and root. Light treatments and rootstock cultivars did not affect number of leaves, leaf chlorophyll value and T/R ratio of seedlings, but seedlings in red LEDs were significantly more compact than those in no light treatment. Moreover, the root morphology of seedlings such as total root surface area, total root length, and number of toot tips in red LEDs was also greater than that in no light treatment.