DOI QR코드

DOI QR Code

Effects of light-emitting diodes on protoplast regeneration from gametophytic cells of the commercial kelp Undaria pinnatifida (Laminariales, Phaeophyceae)

  • Received : 2022.04.19
  • Accepted : 2022.06.07
  • Published : 2022.06.15

Abstract

Light-emitting-diodes (LEDs) are a lighting source useful for the precise evaluation of light quality effect on biological systems. Despite the importance of light spectra on the regeneration of land plant protoplasts ("naked cells"), this factor has not been tested yet on protoplasts from multicellular algae. This study reports on the effects of pure primary colors (red, blue, and green), dichromatic (red plus blue, RB, 1 : 2) and white LEDs on protoplast regeneration from male and female Undaria pinnatifida gametophytes. We also evaluated the effect of different light spectra on pigment composition (chlorophyll a, chlorophyll c, and fucoxanthine), and the light intensities under the best condition on the regeneration process. In the early stages, blue or RB LEDs increased the percentage of dividing female protoplasts, whereas red, blue, and RB LEDs enhanced that of dividing male protoplasts. In the later stages, RB LEDs showed a positive effect only on the percentage of multiple rhizoid-like protrusions (male gametophyte). They also increased the final area of both regenerated gametophytes. The LEDs did not affect pigment composition in female gametophytes. In male gametophytes, in contrast, they reduced chlorophyll c, while blue, RB, and green LEDs decreased fucoxanthin. Under RB LEDs, the optimal light intensity was 80 µmol photons m-2 s-1 for female gametophytes and 40 to 60 µmol photons m-2 s-1 for male gametophytes. Our results suggest that dichromatic LED illumination (red-blue) improves regeneration of U. pinnatifida gametophyte-isolated protoplasts. Thus, dichromatic LEDs might a suitable light source for enhancing protoplast regeneration in brown seaweeds.

Keywords

Acknowledgement

This study was supported by research fund from Chosun University, 2021 to T. O. Cho.

References

  1. Abiusi, F., Sampietro, G., Marturano, G., Biondi, N., Rodolfi, L., D'Ottavio, M. & Tredici, M. R. 2014. Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol. Bioeng. 111:956-964. https://doi.org/10.1002/bit.25014
  2. Asensi, A., Gall, E. A., Marie, D., Billot, C., Dion, P. & Kloareg, B. 2001. Clonal propagation of Laminaria digitata (Phaeophyceae) sporophytes through a diploid cell-filament suspension. J. Phycol. 37:411-417. https://doi.org/10.1046/j.1529-8817.2001.037003411.x
  3. Avila-Peltroche, J. & Won, B. Y. 2020. Protoplast production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) using commercial enzymes. J. Mar. Biosci. Biotechnol. 12:50-58.
  4. Avila-Peltroche, J., Won, B. Y. & Cho, T. O. 2019. Protoplast isolation and regeneration from Hecatonema terminale (Ectocarpales, Phaeophyceae) using a simple mixture of commercial enzymes. J. Appl. Phycol. 31:1873-1881. https://doi.org/10.1007/s10811-018-1660-6
  5. Avila-Peltroche, J., Won, B. Y. & Cho, T. O. 2020. Optimization of protoplast isolation from the gametophytes of brown alga Undaria pinnatifida using response surface methodology. J. Appl. Phycol. 32:2233-2244. https://doi.org/10.1007/s10811-020-02095-3
  6. Benet, H., Gall, E. A., Asensi, A. & Kloareg, B. 1997. Protoplast regeneration from gametophytes and sporophytes of some species in the order Laminariales (Phaeophyceae). Protoplasma 199:39-48. https://doi.org/10.1007/BF02539804
  7. Bhojwani, S. S. & Razdan, M. K. 1996. Plant tissue culture: theory and practice, a revised edition. Elsevier, Amsterdam, 338 pp.
  8. Chawla, H. S. 2009. Introduction to plant biotechnology. 3rd ed. Science Publishers, Enfield, 109 pp.
  9. Choi, H. G., Kim, Y. S., Lee, S. J., Park, E. J. & Nam, K. W. 2005. Effects of daylength, irradiance and settlement density on the growth and reproduction of Undaria pinnatifida gametophytes. J. Appl. Phycol. 17:423-430. https://doi.org/10.1007/s10811-005-0432-2
  10. Coelho, S. M., Scornet, D., Rousvoal, S., Peters, N., Dartevelle, L., Peters, A. F. & Cock, J. M. 2012. Isolation and regeneration of protoplast from Ectocarpus. Cold Spring Harb. Protoc. 2012:361-364.
  11. Compton, M. E., Saunders, J. A. & Veilleux, R. E. 2000. Use of protoplasts for plant improvement. In Trigiano, R. N. & Gray, D. J. (Eds.) Plant Tissue Culture Concepts and Laboratory Exercises. CRC Press, Boca Raton, FL, pp. 249-261.
  12. Cribari-Neto, F. & Zeileis, A. 2010. Beta regression in R. J. Stat. Softw. 34:1-24.
  13. Dayani, S., Heydarizadeh, P. & Sabzalian, M. R. 2016. Efficiency of light-emitting-diodes for future photosynthesis. In Pessarakli, M. (Ed.) Handbook of Photosynthesis. 3rd ed. CRC Press, Boca Raton, FL, pp. 761-783.
  14. Deng, X., Qin, S., Zhang, Y. & Jiang, P. 2009. Comparison of photobioreactors and optimal light regime for rapid vegetative propagation of transgenic Undaria pinnatifida gametophytes. J. Chem. Technol. Biotechnol. 84:1486-1492. https://doi.org/10.1002/jctb.2206
  15. Deng, Y., Yao, J., Wang, X., Guo, H. & Duan, D. 2012. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS ONE 7:e39704. https://doi.org/10.1371/journal.pone.0039704
  16. Destombe, C. & Oppliger, L. V. 2011. Male gametophyte fragmentation in Laminaria digitata: a life history strategy to enhance reproductive success. Cah. Biol. Mar. 52:385-394.
  17. Dwiranti, F., Hiraoka, M., Taguchi, T., Konishi, Y., Tominaga, M. & Tominaga, A. 2012. Effects of gametophytes of Ecklonia kurome on the levels of glucose and triacylglycerol in db/db, prediabetic C57BL/6J and IFN-γ KO mice. Int. J. Biomed. Sci. 8:64-75.
  18. Edwards, M. S. 2022. It's the little things: the role of microscopic life stages in maintaining kelp populations. Front. Mar. Sci. 9:871204. https://doi.org/10.3389/fmars.2022.871204
  19. Falcon, J., Torriglia, A., Attia, D., Vienot, F., Gronfier, C., Behar-Cohen, F., Martinsons, C. & Hicks, D. 2020. Exposure to artificial light at night and the consequences for flora, fauna, and ecosystems. Front. Neurosci. 14:602796. https://doi.org/10.3389/fnins.2020.602796
  20. Ferrari, S. L. P. & Cribari-Neto, F. 2004. Beta regression for modeling rates and proportions. J. Appl. Stat. 31:799-815. https://doi.org/10.1080/0266476042000214501
  21. Field, A. 2009. Discovering statistics using SPSS. 3rd ed. Sage Publication, Los Angeles, CA, 389 pp.
  22. Foster, R. M. & Dring, M. J. 1994. Influence of blue light on the photosynthetic capacity of marine plants from different taxonomic, ecological and morphological groups. Eur. J. Phycol. 29:21-27. https://doi.org/10.1080/09670269400650441
  23. Fox, J. & Weisberg, S. 2019. An R Companion to Applied Regression. 3rd ed. Available from: https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Accessed Feb 15, 2022.
  24. Gall, E. A., Chiang, Y. -M. & Kloareg, B. 1993. Isolation and regeneration of protoplasts from Porphyra dentata and Porphyra crispata. Eur. J. Phycol. 28:277-283. https://doi.org/10.1080/09670269300650391
  25. Gao, J., Zhang, Y., Wang, H. & Qin, S. 2005. Suspension culture of gametophytes of transgenic kelp in a photobioreactor. Biotechnol. Lett. 27:1025-1028. https://doi.org/10.1007/s10529-005-8098-z
  26. Goldman, D. 2014. Regeneration, morphogenesis and selforganization. Development 141:2745-2749. https://doi.org/10.1242/dev.107839
  27. Gupta, S. D. & Jatothu, B. 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 7:211-220. https://doi.org/10.1007/s11816-013-0277-0
  28. Hanelt, D. & Figueroa, F. L. 2012. Physiological and photomorphogenic effects of light on marine macrophytes. In Wiencke, C. & Bischof, K. (Eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, Berlin, pp. 3-23.
  29. Hothorn, T., Bretz, F. & Westfall, P. 2008. Simultaneous inference in general parametric models. Biom. J. 50:346-363. https://doi.org/10.1002/bimj.200810425
  30. Huddy, S. M., Meyers, A. E. & Coyne, V. E. 2015. Regeneration of whole plants from protoplasts of Gracilaria gracilis (Gracilariales, Rhodophyta). J. Appl. Phycol. 27:427-435. https://doi.org/10.1007/s10811-014-0278-6
  31. Ishizawa, K., Enomoto, S. & Wanda, S. 1979. Germination and photo-induction of polarity in the spherical cells regenerated from protoplasm fragments of Boergesenia forbesii. Bot. Mag. Tokyo. 92:173-186. https://doi.org/10.1007/BF02497929
  32. Jenkins, G. I. & Cove, D. J. 1983. Light requirements for regeneration of protoplasts of the moss Physcomitrella patens. Planta 157:39-45. https://doi.org/10.1007/BF00394538
  33. Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. 2015. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436:52-57. https://doi.org/10.1016/j.aquaculture.2014.10.037
  34. Kim, Y. S. & Nam, K. W. 1997. Temperature and light responses on the growth and maturation of gametophytes of Undaria pinnatifida (Harvey) Suringar in Korea. J. Korean. Fish. Soc. 30:505-510 (in Korean with English abstract).
  35. Kuwano, K., Abe, N., Nishi, Y., Seno, H., Nishihara, G. N., Iima, M. & Zachleder, V. 2014. Growth and cell cycle of Ulva compressa (Ulvophyceae) under LED illumination. J. Phycol. 50:744-752. https://doi.org/10.1111/jpy.12207
  36. Lafontaine, N., Mussio, I. & Rusig, A. -M. 2011. Production and regeneration of protoplasts from Grateloupia turuturu Yamada (Rhodophyta). J. Appl. Phycol. 23:17-24. https://doi.org/10.1007/s10811-010-9527-5
  37. Lakens, D. 2013. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVA. Front. Psychol. 4:863. https://doi.org/10.3389/fpsyg.2013.00863
  38. Le, B., Shin, J. -A., Kang, M. -G., Sun, S., Yang, S. H. & Chung, G. 2018. Enhanced growth rate and ulvan yield of Ulva pertusa using light-emitting diodes (LEDs). Aquac. Int. 26:937-946. https://doi.org/10.1007/s10499-018-0260-4
  39. Lin, K. -H., Huang, M. -Y., Huang, W. -D., Hsu, M. -H., Yang, Z. -W. & Yang, C. -M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 150:86-91. https://doi.org/10.1016/j.scienta.2012.10.002
  40. Matsumura, W., Yasui, H. & Yamamoto, H. 2001. Successful sporophyte regeneration from protoplasts of Undaria pinnatifida (Laminariales, Phaeophyceae). Phycologia 40:10-20. https://doi.org/10.2216/i0031-8884-40-1-10.1
  41. Miki, O., Okumura, C., Marzuki, M., Tujimura, Y., Fujii, T., Kosugi, C. & Kato, T. 2017. Contrasting effects of blue and red LED irradiations on the growth of Sargassum horneri during the germling and immature stages. J. Appl. Phycol. 29:1461-1469. https://doi.org/10.1007/s10811-016-1026-x
  42. Morita, T., Kurashima, A. & Maegawa, M. 2003. Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyceae). Phycol. Res. 51:154-160.
  43. Murase, N., Abe, M., Noda, M. & Suda, Y. 2014. Growth and maturation of gametophyte in Eisenia bicyclis under different light quality from light emitting diodes (LEDs). J. Nat. Fish. Univ. 62:147-152 (in Japanese with English abstract).
  44. Murgui, A., Elorza, M. V. & Sentandreu, R. 1985. Effect of papulacandin B and calcofluor white on the incorporation of mannoproteins in the wall of Candida albicans blastospores. Biochim. Biophys. Acta Gen. Subj. 841:215-222. https://doi.org/10.1016/0304-4165(85)90024-8
  45. Peters, G. 2018. userfriendlyscience: Quantitative analysis made accessible. R package version 0.7.2. Available from: https://userfriendlyscience.com. Accessed Feb 15, 2022.
  46. Reddy, C. R. K. & Fujita, Y. 1991. Regeneration of plantlets from Enteromorpha (Ulvales, Chlorophyta) protoplasts in axenic culture. J. Appl. Phycol. 3:265-275. https://doi.org/10.1007/BF00003585
  47. Reddy, C. R. K., Gupta, M. K., Mantri, V. A. & Jha, B. 2008. Seaweed protoplast: status, biotechnological perspectives and needs. J. Appl. Phycol. 20:619-632. https://doi.org/10.1007/s10811-007-9237-9
  48. Rorrer, G. L. & Cheney, D. P. 2004. Bioprocess engineering of cell and tissue cultures for marine seaweeds. Aquac. Eng. 32:11-41. https://doi.org/10.1016/j.aquaeng.2004.03.007
  49. Sato, Y., Endo, H., Oikawa, H., Kanematsu, K., Naka, H., Mogamiya, M., Kawano, S. & Kazama, Y. 2020. Sexual difference in the optimum environmental conditions for growth and maturation of the brown alga Undaria pinnatifida in the gametophyte stage. Genes 11:944. https://doi.org/10.3390/genes11080944
  50. Seely, G. R., Duncan, M. J. & Vidaver, W. E. 1972. Preparative and analytical extraction pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 12:184-188. https://doi.org/10.1007/BF00350754
  51. Sellke, T., Bayarri, M. J. & Berger, J. O. 2001. Calibration of p values for testing precise null hypotheses. Am. Stat. 55:62-71. https://doi.org/10.1198/000313001300339950
  52. Seppic. 2022. Ephemer. The trusted materials and ingredients global search engine. Available from: https://www.seppic.com/en/ephemer. Accessed Feb 15, 2022.
  53. Smithson, M. & Verkuilen, J. 2006. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11:54-71. https://doi.org/10.1037/1082-989X.11.1.54
  54. Sullivan, G. M. & Feinn, R. 2012. Using effect size-or why the P value is not enough. J. Grad. Med. Educ. 4:279-282. https://doi.org/10.4300/JGME-D-12-00156.1
  55. Takahashi, F., Yamagata, D., Ishikawa, M., Fukamatsu, Y., Ogura, Y., Kasahara, M., Kiyosue, T., Kikuyama, M., Wada, M. & Kataoka, H. 2007. AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc. Natl. Acad. Sci. U. S. A. 104:19625-19630. https://doi.org/10.1073/pnas.0707692104
  56. Wang, L. & Ruan, Y. -L. 2013. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 4:163.
  57. Wang, W. -J., Wang, F. -J., Sun, X. -T., Liu, F. -L. & Liang, Z. -R. 2013. Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta 237:1123-1133. https://doi.org/10.1007/s00425-012-1831-7
  58. Wang, Z., Sui, Z., Hu, Y., Zhang, S., Pan, Y. & Ju, H. 2014. A comparison of different Gracilariopsis lemaneiformis (Rhodophyta) parts in biochemical characteristics, protoplast formation and regeneration. J. Ocean. Univ. China 13:671-676. https://doi.org/10.1007/s11802-014-2217-1
  59. Warren, C. R. 2008. Rapid measurement of chlorophylls with a microplate reader. J. Plant. Nutr. 31:1321-1332. https://doi.org/10.1080/01904160802135092
  60. Warren, G. S. 1992. The cell biology of plant cell culture systems. In Fowler, M. W., Warren, G. S. & Murray, M. -Y. (Eds.) Plant Biotechnology: Comprehensive Biotechnology (2nd Supplement). Pergamon Press, New York, pp. 99-127.
  61. Xu, Z., Dapeng, L., Hanhua, H. & Tianwei, T. 2005. Growth promotion of vegetative gametophytes of Undaria pinnatifida by blue light. Biotechnol. Lett. 27:1467-1475. https://doi.org/10.1007/s10529-005-1313-0
  62. Yeong, H. -Y., Khalid, N. & Phang, S. -M. 2008. Protoplast isolation and regeneration from Gracilaria changii (Gracilariales, Rhodophyta). J. Appl. Phycol. 20:641-651. https://doi.org/10.1007/s10811-007-9249-5
  63. Zha, X. & Kloareg, B. 1996. Gametophyte protoplast culture of an edible alga Undaria pinnatifida. J. Anhui Agric. Univ. 23:602-605 (in Chinese).