DOI QR코드

DOI QR Code

Effects of Pre Harvest Light Treatments (LEDs, Fluorescent Lamp, UV-C) on Glucosinolate Contents in Rocket Salad (Eruca sativa)

수확 전 LED, 형광등, UV-C 조사가 로켓 샐러드 내 글루코시놀레이트 함량에 미치는 영향

  • Lee, Hye-Jin (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Chun, Jin-Hyuk (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Kim, Sun-Ju (Department of Bio-Environmental Chemistry, Chungnam National University)
  • 이혜진 (충남대학교 생물환경화학과) ;
  • 천진혁 (충남대학교 생물환경화학과) ;
  • 김선주 (충남대학교 생물환경화학과)
  • Received : 2016.02.16
  • Accepted : 2016.12.20
  • Published : 2017.04.28

Abstract

The aim of this study was to investigate the effect of different light sources on the levels of glucosinolates (GSLs) in rocket salad (Eruca sativa L.). The light sources used in the study were: natural light (Control-1 or 2), red light-emitting diodes(LEDs), blue LEDs, mixed red and blue LEDs (R+B LEDs), white LEDs, fluorescent lamps (FL), and fluorescent lamps plus UV-C (FL+UV-C). Two separate experiments were conducted [Experiment I: Control-1, Red LED, Blue LED, Mix (R+B) LED and Experiment II: Control-2, White LED, FL, FL+UV-C] because of the limited number of growth chambers in our laboratory. The rate of increase in the length of rocket salad leaves was the highest under red LEDs and, FL confirming that red LED and, FL affect the growth of rocket salad. We separated and identified seven types of GSLs from the rocket salad:glucoraphanin, diglucothiobeinin, glucoerucin, glucobrassicin, dimeric 4-mercaptobutyl GSL, 4-methoxyglucobrassicin, and gluconasturtiin. The highest total GSL contents in Eexperiment I was found in plants grown under in red LEDs ($4.30{\mu}mol{\cdot}g^{-1}\;dry$ weight, DW), and the lowest under blue LEDs ($0.17{\mu}mol{\cdot}g^{-1}\;DW$). The highest total GSL contents in Experiment II was found in plants grown under FL ($13.45{\mu}mol{\cdot}g^{-1}\;DW$), and the lowest in FL+UV-C ($0.39{\mu}mol{\cdot}g^{-1}\;DW$). Especially in Experiment II, the content of dimeric 4-mercaptobutyl, which has a strong aroma and spicy flavor in rocket salad, was higher under FL and white LEDs than in Control-2, increasing by approximately 14.9 and 3.2-fold respectively. Therefore, light sources such as red LEDs, white LEDs and FL affected the accumulation of GSLs in rocket salad.

인공 광원에 따른 rocketsalad(Eruca sativa L.) 내 GSL 함량을 조사하였다. 실험에 사용한 광원의 종류는 자연광(Control-1 또는 2), Red LED, Blue LED, Mix(R+B) LED(Red LED+Blue LED), White LED, Fluorescent Lamp(FL), Fluorescent Lamp+UV-C(FL+UV-C). 실험은 식물 생장기 대수 제한 때문에 [실험 I;Control-1, Red LED, Blue LED, Mix(R+B) LED]과 [실험 II;Control-2, White LED, FL, FL+UV-C]로 구분하여 수행하였다. 그 결과, Red LED와 FL에서 rocket salad의 잎의 길이의 증가율이 가장 높았다. 그러므로 Red LED와 FL이 rocketsalad의 성장과 관계가 있음을 확인했다. Rocketsalad로부터 총 7종류의 GSLs(glucoraphanin, diglucothiobeinin, glucoerucin, glucobrassicin, dimeric 4-mercaptobutyl GSL, 4-methoxy glucobrassicin, gluconasturtiin)를 분리 및 동정하였다. [실험 I]에서 총 GSL 함량은 Red LED(4.30)에서 가장 높고 Blue LED($0.17{\mu}mol{\cdot}g^{-1}\;DW$)에서 가장 낮았다. [실험 II]에서 총 GSL 함량은 FL(13.45)에서 가장 높고 FL+UV-C($0.39{\mu}mol{\cdot}g^{-1}\;DW$)에서 가장 낮았다. 특히 Rocket salad의 강한 향과 매운 맛을 돋아주는 dimeric 4-mercaptobutyl 함량은 [실험 II]에서 Control-2에 비해 FL과 White LED가 각각 14.9, 3.2배 증가했다. 따라서 Red LED, White LED, FL은 rocket salad의 GSL 축적에 영향을 주었다고 판단된다.

Keywords

References

  1. Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EA, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (rocket salad). Phytochemistry 61:25-30. doi: 10.1016/S0031-9422(02)00203-0
  2. Botto JF, Sanchez RA, Whitelam GC, Casal JJ (1996) Phytochrome a mediates the promotion of seed germination by very low fluences of light and canopy shade light in arabidopsis. Plant Physiol. 110:439-444. doi: 10.1104/pp.110.2.439
  3. Carvalho SD, Folta KM (2014) Sequential light programs shape kale (Brassica napus ) sprout appearance and alter metabolic and nutrient content. Hortic Res 8:1-13. doi: 10.1038/hortres.2014.8
  4. Choi SJ (2011) Enhancement of skin color by postharvest UV irradiation in 'Fuyu' persimmon fruits. Korean J Hortic Sci Technol 29:441-446.
  5. Chun JH, Kim SB, Arasu MV, AL-Dhabi NA, Chung DY, Kim SJ (2015) Combined effect of nitrogen, phosphorus and potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.). Saudi J Bio Sci 24:436-443 doi: 10.1016/j.sjbs.2015.08.012
  6. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310-325. doi: 10.1039/b9ay00280d
  7. Danon A, Gallois P (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett. 483:131-136. doi: 10.1016/S0014-5793(98)01208-3
  8. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. doi: 10.1016/S0031-9422(00)00316-2
  9. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci Nutr 18:123-201. doi: 10.1080/10408398209527361
  10. Hwang MK, Huh CS, Seo YJ (2004) Optic characteristics comparison and analysis of SMD type Y/G/W HB LED. J KIIEE 18:15-21.
  11. Jansen MA, Hectors K, O'Brien NM, Guisez Y, Potters G (2008) Plant stress and human health: Do human consumers benefit from UV-B acclimated crops. Plant Sci 175:449-458. doi: 10.1016/j.plantsci.2008.04.010
  12. Jirovetz L, Smith D, Buchbauer G (2002) Aroma compound analysis of Eruca sativa (Brassicaceae ) SPME headspace leaf samples using GC, GC-MS, and olfactometry. J Agric Food Chem 50:4643-4646. doi: 10.1021/jf020129n
  13. Johkan M, Shoji K, Goto F, Hashida SN, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hort Science 45:1809-1814.
  14. Kim SJ, Kawaharada C, Ishii G (2006) Effect of ammonium: nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad (Eruca sativa Mill.). Soil Sci Plant Nutr 52:387-393. doi: 10.1111/j.1747-0765.2006.00048.x
  15. Kim SJ, Kawaharada C, Jin S, Hashimoto M, Ishii G, Yamauchi H (2007) Structural elucidation of 4-(cystein-S-yl) butyl glucosinolate from the leaves of Eruca sativa. Biosci Biotechnol Biochem 71:114-121. doi: 10.1271/bbb.60400
  16. Kim SJ, Ishii G (2007) Effect of storage temperature and duration on glucosinolate, total vitamin C and nitrate contents in rocket salad (Eruca sativa Mill.). J Sci Food Agr 87:966-973. doi: 10.1002/jsfa.2787
  17. Kim HR, You YH (2013) Effects of red, blue, white, and far-red led source on growth responses of Wasabia japonica seedlings in plant factory. Korean J Hortic Sci Technol 31:415-422. doi: 10.7235/hort.2013.13011
  18. Lee GR, Kim YJ, Chun JH, Lee MK, Ryu DK, Park SH, Chung SO, Park SU, Lim YP, Kim SJ (2014) Variation of glucosinolate contents of 'Sinhongssam' grown under various light sources, periods, and light intensities. CNU J Agr Sci 41:125-133. doi: 10.7744/cnujas.2014.41.2.125
  19. Lee JS, Kim YH (2014) Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean J Hortic Sci Technol 32:330-339. doi: 10.7235/hort.2014.13152
  20. Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. Hort Science 43:2243-2244.
  21. Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14:207-225. doi: 10.1105/tpc.000646
  22. Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. Hort Science 43:1951-1956.
  23. Park JE, Park YG, Jeong BR, Hwang SJ (2012) Growth and anthocyanin content of lettuce as affected by artificial light source and photoperiod in a closed-type plant production system. Korean J Hortic Sci Technol 30:673-679. doi: 10.7235/hort.2012.12020
  24. Schenk M, Raffellini S, Guerrero S, Blanco GA, Alzamora SM (2011) Inactivation of Escherichia coli , Listeria innocua and Saccharomyces cerevisiae by UV-C light: study of cell injury by flow cytometry. LWT-Food Sci Technol 44:191-198. doi: 10.1016/j.lwt.2010.05.012
  25. Son KH, Park JH, Kim D, Oh MM (2012) Leaf shape Index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci Technol 30:664-672. doi: 10.7235/hort.2012.12063
  26. Talalay P, Zhang Y (1996) Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans 24:806-810. doi: 10.1042/bst0240806
  27. Wang H, Gu M, Cui J, Shi K, Zhou T, Yu J (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol B.96:30-37. doi: 10.1016/j.jphotobiol.2009.03.010
  28. Wu MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chang HM (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753-1758. doi: 10.1016/j.foodchem.2006.02.010
  29. Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: Chemistry and mechanisms. Cancer Res 54:1976-1981.

Cited by

  1. Flavonoid accumulation in common buckwheat (Fagopyrum esculentum) sprout tissues in response to light vol.59, pp.1, 2018, https://doi.org/10.1007/s13580-018-0003-5
  2. Growth of dropwort plants and their accumulation of bioactive compounds after exposure to UV lamp or LED irradiation vol.59, pp.5, 2017, https://doi.org/10.1007/s13580-018-0076-1
  3. Harvest strategies to maximize the annual production of bioactive compounds, glucosinolates, and total antioxidant activities of kale in plant factories vol.60, pp.6, 2019, https://doi.org/10.1007/s13580-019-00174-0
  4. The Effect of Plant Growth Compensation by Adding Silicon-Containing Fertilizer under Light Stress Conditions vol.10, pp.7, 2017, https://doi.org/10.3390/plants10071287