• Title/Summary/Keyword: RECYCLE

Search Result 1,266, Processing Time 0.028 seconds

A Study on Biological Treatment of Nitrogen and Phosphorus (생물학적 질소 및 인 제거에 관한 연구)

  • 이현동;유형열;김원만
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 1992
  • The Anaerbic Anoxic/oxic process is one of the biological treatment methods to remove nitrogen and phosphorus effectively which are nutritional elements for eutrophication. Supernatant of primary sediment of Anaerobic digester is used as a carbon source instead of methanol methanol supply in usual A$_{2}$/O process. The efficiency of the following treatment processes are as follow : 1) Changing recycle ratio in the usual A$_{2}$/O process without the stage of Anaerobic digester. 2) Changing recycle ratio in the usual A$_{2}$/O process with the supernatant supply of the Anaerobic digester. In the result of comparison, changing recycle ratio is almost no effect in the removal of phosphorus, however the effect of removal in nitrogenous substance are remarkable, and the effect of Anaerobic digester is not as effective as expected because the BOD removed in the digester partly, the rate of phosphorus to the BOD exceed pertinent range.

  • PDF

Internal Recycle Distribution and Heat Transfer Effect for Optimal Design of Dividing Wall Distillation Columns (분리벽형 증류탑의 최적 설계를 위한 내부 순환량 분포와 전열 특성 연구)

  • 정성오;이기홍;이문용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.236-241
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved column design method is suggested to utilize the heat transfer through the wall. The suggested method is compared with the existing method via simulation study in which the proposed design shows improved energy saving result.

Memtrane SEparation of Activated Sludge for Waste Water Treatment and Water Recycle

  • Miyano, O-Tadadki;Yohgi Inoue;Toyozo Hamada;Shuji Nakatsuka
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.39-39
    • /
    • 1999
  • Membrane separation technology has become a more attractive technology on waste water treatment and water recycle in recent years. On this application, membrane does not take main part of treatment, such as decomposition or handling of organic matter in the waste water, but it is very important supporting method in the total system. Activated sludge is most popular method as main part. In the system , membrane works as a separator to obtain clear water after biological treatment, by which the permeate could be released, recycled or applied to further additional treatment, instead of conventional sedimentation, coagulation and sand filtration. We would like to introduce our system cases for waste water treatment and water recycle, in which membrane separation technology works. In most of cases, membranes are applied to solid- liquid separation of activated sludge. Our experiences will be introduced as following items.

  • PDF

2차 Cake 제련 Recycle

  • Jeong, Gyeong-Su;Lee, Gwang-Ho;Sin, Seung-Ho
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.05a
    • /
    • pp.53-58
    • /
    • 2004
  • 동제련 공정중 고품질의 전기동을 효율적으로 생산하기 위해서는 Anode중에 적정량의 비소(As)가 필요하다. 그러나 Cu가 약30% 함유되어 있는 동정광에 함유된 비소는 Smelting Furnace 용련과정에서 비소 특성상 약 70%가 Offgas로 휘발되어 황산공장으로 유입 처리되고, 나머지 30%만 아노드(Anode)로 유입되므로 별도로 전련공정에서 발생된 Cu-Cement(비소 함유)를 정제로에 Recycle 하고 있으며, 부족시 추가로 비소 Source를 구입하여 정제로에 투입하고 있다. 이를 효과적으로 해결하기 위하여 현재 위탁처리를 하고있는 As가 함유된 폐수처리 2차 중화시 발생된 2차 Cake 60W.T/D중 30W.T/D를 기존 Converter Slag 건조용 Rotary Dryer를 이용하여 Converter Furnace에 Recycle 함으로써 전련 Anode에 필요한 비소를 공급하고, 또한 2차 Cake에 혼입되어 있는 CaO 활용으로 부재료 절감, 유가금속(Cu등) 회수등 및 2차 Cake 위탁처리비용을 절감하며, Cu-Cement는 Smelting Furnace에 투입하여 정제로 투입시 발생되는 문제점들을 동시에 해결코자 한다.

  • PDF

A Study on the Promotion Plan of Recycled Concrete (폐콘크리트의 활용 촉진 방안)

  • Cho Young-Jun;Park Dae-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.21-24
    • /
    • 2005
  • A by-product of construction can be easily reused through properly treatment. On the contrary, the level of technique to reuse the by-product is not so high. Especially, the bulky of trash concrete is huge. The demand and treatment cost of them is on the increase. So, the riffle effect of the recycle of the trash concrete cannot be bypassed. But the research on the recycle of them is few. Therefore, the reuse of recycled concrete, the treatment of them, and the promotion plan of them were suggested in this study

  • PDF

Production of an Anticoagulant Hirudin by Fed-batch and Continuous Cell Recycle Fermentations Using Recombinant Saccharomyces cerevisiae (유가식과 세포재순환 연속공정을 이용한 항혈전제 hirudin의 생산)

  • 최치민;김명동;이상기;서진호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.456-460
    • /
    • 1998
  • Fed-batch fermentations were carried out in order to improve the efficiency of hirudin production by recombinant Saccharomyces cerevisiae. A fed-batch fermentation done with the optimized semi-synthetic medium resulted in a maximum hirudin concentration of 342mg/$\ell$ by keeping a galactose concentrations between 10 and 30g/$\ell$ which corresponded to a 11.4-fold increase in hirudin concentration compared with the simple bach fermentation done with the same medium. Comparison of the chromatographic pattern of proteins in the growth medium clearly showed that the use of the semi-synthetic medium is more advantageous for separation of hirudin than the case o fusing the complex medium. Continuous cell recycle fermentation done at dilution rate of 0.1h-1 and an inlet galactose concentration of 100g/$\ell$ yielded a maximum hirudin productivity of 19.1mg hirudin/$\ell$$.$h.

  • PDF

Methodological Study for Recycle of Chemical Mechanical Polishing Slurry (슬러리 Modification 에 대한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.567-568
    • /
    • 2006
  • To investigate the recycle possibility of slurry for the oxide-chemical mechanical polishing (oxide-CMP) application, three kinds of retreated methods were introduced as follows: First, the effects on the addition of silica abrasives and the diluted silica slurry (DSS) on CMP performances were investigated. Second, the characteristics of mixed abrasive slurry (MAS) using non-annealed and annealed alumina ($Al_2O_3$) powder as an abrasive added within DSS were evaluated to achieve the improvement of removal rates (RRs) and within-wafer non-uniformity (WIWNU%). Third, the oxide-CMP wastewater was examined in order to evaluate the possible ways of reusing it. And then, we have discussed the CMP characteristics of silica slurry retreated by mixing of original slurry and used slurry (MOS).

  • PDF

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

Continuous Alcohol Fermentation by Cell Recycling Using Hollow Fiber Recycle Reactor (Hollow Fiber Recycle Reactor를 이용한 알콜연속 발효)

  • 이시경;박경호;백운화;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.193-198
    • /
    • 1986
  • Improvement of productivity in ethanol fermentation was attempted using a hollow fiber bioreactor (HFR) where Saccharomyces cerevisiac var. ellipsoideus cells were recycled to achieve a high yeast concentration. Industrial wort was used as the fermentation media without supplying any additional nutrients. The performances in hollow fiber recycle reactor (HFR) were compared with those of batch and continuous cultures. In a continuous culture with 11$^{\circ}$P and 15$^{\circ}$P wort media final ethanol concentrations were 4.71% and 5.82% (v/v) and yields 86.2% and 78.6% respectively when the dilution rate (D) was 0.1 h$^{-1}$, in contrast, the ethanol concentration and productivity in HFR were 7.64%(v/v) and 6.1g/l/h at D=0.1h$^{-1}$ with 15$^{\circ}$P media. When the dilution rate was increased to 0.2 h$^{-1}$, the concentration and the Productivity were 7.62% (v/v) and 12.2g/l/h. At D=0.3h$^{-1}$ the sugar was completely consumed and the productivity was 18.1g/l/h. This correponds to 4 times that in continuous system and 16.3 times that in the batch system performed in comparable conditions.

  • PDF

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF