DOI QR코드

DOI QR Code

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish (Department of Chemical Engineering, Indian Institute of Technology Kanpur) ;
  • Verma, Nishith (Department of Chemical Engineering, Indian Institute of Technology Kanpur)
  • Received : 2018.03.18
  • Accepted : 2018.07.15
  • Published : 2018.11.25

Abstract

Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

Keywords

Acknowledgement

Supported by : Shell Technology Centre Bangalore

References

  1. K.-H. Kim, S.-K. Ihm, J. Hazard. Mater. 186 (2011) 16. https://doi.org/10.1016/j.jhazmat.2010.11.011
  2. A. Pintar, J. Batista, T. Tisler, Appl. Catal. B: Environ. 84 (2008) 30. https://doi.org/10.1016/j.apcatb.2008.03.001
  3. J. Guo, M. Al-Dahhan, Chem. Eng. Sci. 60 (2005) 735. https://doi.org/10.1016/j.ces.2004.08.043
  4. J. Barbier, L. Oliviero, B. Renard, D. Duprez, Top. Catal. 33 (2005) 77. https://doi.org/10.1007/s11244-005-2509-1
  5. Z.P.G. Masende, B.F.M. Kuster, K.J. Ptasinski, F. Janssen, J.H.Y. Katima, J.C. Schouten, Top. Catal. 33 (2005) 87. https://doi.org/10.1007/s11244-005-2514-4
  6. E. Szabados, G. Sagi, F. Somodi, B. Maroti, D. Sranko, A. Tungler, J. Ind. Eng. Chem. 46 (2017) 364. https://doi.org/10.1016/j.jiec.2016.11.005
  7. S.K. Kim, S.K. Ihm, Ind. Eng. Chem. Res. 41 (2002) 1967. https://doi.org/10.1021/ie010590p
  8. S. Keav, A. Martin, J. Barbier, D. Duprez, Catal. Today 151 (2010) 143. https://doi.org/10.1016/j.cattod.2010.01.025
  9. S. Nousir, S. Keav, J. Barbier, M. Bensitel, R. Brahmi, D. Duprez, Appl. Catal. B: Environ. 84 (2008) 723. https://doi.org/10.1016/j.apcatb.2008.06.010
  10. E. Castillejos-Lopez, A. Maroto-Valiente, D.M. Nevskaia, V. Munoz, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Catal. Today 143 (2009) 355. https://doi.org/10.1016/j.cattod.2008.09.033
  11. P.D. Vaidya, V.V. Mahajani, Chem. Eng. J. 87 (2002) 403. https://doi.org/10.1016/S1385-8947(02)00020-7
  12. L. Oliviero, J. Barbier, D. Duprez, A. Guerrero-Ruiz, B. Bachiller-Baeza, I. Rodriguez-Ramos, Appl. Catal. B: Environ. 25 (2000) 267. https://doi.org/10.1016/S0926-3373(99)00141-1
  13. E. Szabados, D.F. Sranko, F. Somodi, B. Maroti, S. Kemeny, A. Tungler, J. Ind. Eng. Chem. 34 (2016) 405. https://doi.org/10.1016/j.jiec.2015.12.019
  14. S. Chaliha, K.G. Bhattacharyya, Chem. Eng. J. 139 (2008) 575. https://doi.org/10.1016/j.cej.2007.09.006
  15. B.L. Yadav, A. Garg, Chem. Eng. J. 252 (2014) 185. https://doi.org/10.1016/j.cej.2014.04.110
  16. G. Ovejero, A. Rodriguez, A. Vallet, J. Garcia, Chem. Eng. J. 215-216 (2013) 168. https://doi.org/10.1016/j.cej.2012.11.028
  17. S.K. Kim, S.K. Ihm, Top. Catal. 33 (2005) 171. https://doi.org/10.1007/s11244-005-2523-3
  18. F. Arena, R. Giovenco, T. Torre, A. Venuto, A. Parmaliana, Appl. Catal. B: Environ. 45 (2003) 51. https://doi.org/10.1016/S0926-3373(03)00163-2
  19. S. Hocevar, U.O. Krasovec, B. Orel, A.S. Arico, H. Kim, Appl. Catal. B: Environ. 28 (2000) 113. https://doi.org/10.1016/S0926-3373(00)00167-3
  20. D. Posada, P. Betancourt, F. Liendo, J.L. Brito, Catal. Lett. 106 (2006) 81. https://doi.org/10.1007/s10562-005-9195-2
  21. H. Zhao, W. Deng, Y. Li, Adv. Compos. Hybrid Mater. 1 (2018) 404. https://doi.org/10.1007/s42114-017-0015-0
  22. K. Srinivasarao, P. Mohanbabu, P.K. Mukhopadhyay, Adv. Compos. Hybrid Mater. 1 (2018) 364. https://doi.org/10.1007/s42114-018-0024-7
  23. S. Yang, W. Zhu, J. Wang, Z. Chen, J. Hazard. Mater. 153 (2008) 1248. https://doi.org/10.1016/j.jhazmat.2007.09.084
  24. B. Erjavec, R. Kaplan, P. Djinovic, A. Pintar, Appl. Catal. B: Environ. 132-133 (2013) 342. https://doi.org/10.1016/j.apcatb.2012.12.007
  25. D.F.M. Santos, O.S.G.P. Soares, A.M.T. Silva, J.L. Figueiredo, M.F.R. Pereira, Appl. Catal. B: Environ. 199 (2016) 361. https://doi.org/10.1016/j.apcatb.2016.06.041
  26. A. Fortuny, C. Bengoa, J. Font, F. Castells, A. Fabregat, Catal. Today 53 (1999) 107. https://doi.org/10.1016/S0920-5861(99)00106-6
  27. F. Stuber, I. Polaert, H. Delmas, J. Font, A. Fortuny, A. Fabregat, J. Chem. Technol. Biotechnol. 76 (2001) 743. https://doi.org/10.1002/jctb.441
  28. A. Pintar, M. Besson, P. Gallezot, Appl. Catal. B: Environ. 31 (2001) 275. https://doi.org/10.1016/S0926-3373(00)00288-5
  29. A. Vallet, G. Ovejeroa, A. Rodrigueza, J.A. Peres, J. Garciaa, J. Hazard. Mater. 244-245 (2013) 46. https://doi.org/10.1016/j.jhazmat.2012.11.019
  30. P.M. Alvarez, D. McLurgh, P. Plucinski, Ind. Eng. Chem. Res. 41 (2002) 2147. https://doi.org/10.1021/ie0104464
  31. R.R. Zapico, P. Marin, F.V. Diez, S. Ordonez, Chem. Eng. J. 270 (2015) 122. https://doi.org/10.1016/j.cej.2015.01.112
  32. A. Santos, P. Yustos, B. Durban, F. Garcia-Ochoa, Ind. Eng. Chem. Res. 40 (2001) 2773. https://doi.org/10.1021/ie001129k
  33. J. Guo, M. Al-Dahhan, Ind. Eng. Chem. Res. 42 (2003) 5473. https://doi.org/10.1021/ie0302488
  34. A. Pintar, J. Levec, Ind. Eng. Chem. Res. 33 (1994) 3070. https://doi.org/10.1021/ie00036a023
  35. Y. Oshima, K. Tomita, S. Koda, Ind. Eng. Chem. Res. 38 (1999) 4183. https://doi.org/10.1021/ie9902939
  36. F. Stuber, K.M. Smith, M.B. Mendoza, R.R.N. Marques, A. Fabregat, C. Bengoa, J. Font, A. Fortuny, S. Pullket, G.D. Fowler, N.J.D. Graham, Appl. Catal. B: Environ. 110 (2011) 81. https://doi.org/10.1016/j.apcatb.2011.08.029
  37. F. Arena, R.D. Chio, B. Gumina, L. Spadaro, G. Trunfio, Inorg. Chim. Acta 431 (2015) 101. https://doi.org/10.1016/j.ica.2014.12.017
  38. F. Arena, E. Alongi, P. Famulari, A. Parmaliana, G. Trunfio, Catal. Lett.107 (2006) 39. https://doi.org/10.1007/s10562-005-9729-7
  39. S. Hocevar, U.O. Krasovec, B. Orel, A.S. Arico, H. Kim, Appl. Catal. B: Environ. 28 (2000) 113. https://doi.org/10.1016/S0926-3373(00)00167-3
  40. F. Arena, C. Italiano, A. Raneri, C. Saja, Appl. Catal. B: Environ. 99 (2010) 321. https://doi.org/10.1016/j.apcatb.2010.06.039
  41. T.D. Burchell, Carbon Materials for Advanced Technologies, Pergamon, Elsevier Science Ltd., Oxford, UK, 1999.
  42. R.S. Ruoff, D.C. Lorents, in: M.E.I.S. Dresselhaus (Ed.), Carbon Nanotubes, Pergamon, Oxford, UK, 1996.
  43. C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge, X. Guo, F. Xie, B. Jiang, E.K. Wujcik, Y. Huang, N. Wang, Z. Guo, Polymer 131 (2017) 263. https://doi.org/10.1016/j.polymer.2017.10.049
  44. Y. He, S. Yang, H. Liu, Q. Shao, Q. Chen, C. Lu, Y. Jiang, C. Liu, Z. Guo, J. Colloid Interface Sci. 517 (2018) 40. https://doi.org/10.1016/j.jcis.2018.01.087
  45. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, J. Electrochem. Soc. 164 (2017) H651. https://doi.org/10.1149/2.1531709jes
  46. B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, Z. Guo, Dalton Trans. 46 (2017) 15769. https://doi.org/10.1039/C7DT03003G
  47. Y. Li, B. Zhou, G. Zheng, X. Liu, T. Li, C. Yan, C. Cheng, K. Dai, C. Liu, C. Shen, Z. Guo, J. Mater. Chem. C 6 (2018) 2258. https://doi.org/10.1039/C7TC04959E
  48. H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, J. Mater. Chem. C 4 (2016) 157. https://doi.org/10.1039/C5TC02751A
  49. H. Liu, W. Huang, X. Yang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, J. Mater. Chem. C 4 (2016) 4459. https://doi.org/10.1039/C6TC00987E
  50. Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren, L. Wu, Z. Yao, Y. Zhou, N. Wang, K. Jiang, H. Lin, Z. Guo, Adv. Funct. Mater. 27 (2017) 1703068. https://doi.org/10.1002/adfm.201703068
  51. Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, Z. Guo, J. Mater. Chem. C 6 (2018) 3004. https://doi.org/10.1039/C8TC00452H
  52. A. Yadav, A.K. Teja, N. Verma, J. Environ. Chem. Eng. 4 (2016) 1504. https://doi.org/10.1016/j.jece.2016.02.021
  53. S. Mishra, N. Verma, J. Ind. Eng. Chem. 36 (2016) 346. https://doi.org/10.1016/j.jiec.2016.02.025
  54. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, 2005.
  55. C. Kaweeteerawat, A. Ivask, R. Liu, H. Zhang, C.H. Chang, C. Low-Kam, et al., Environ. Sci. Technol. 49 (2015) 1105. https://doi.org/10.1021/es504259s
  56. B. Bhaduri, N. Verma, J. Colloid Interface Sci. 457 (2015) 62. https://doi.org/10.1016/j.jcis.2015.06.047
  57. Y.N. Prajapati, B. Bhaduri, H.C. Joshi, A. Srivastava, N. Verma, Chemosphere 155 (2016) 62. https://doi.org/10.1016/j.chemosphere.2016.04.040
  58. A.F.J. Santiago, J.F. Sousa, R.C. Guedes, C.E.M. Jeronimo, M. Benachour, J. Hazard. Mater. B 38 (2006) 325.
  59. S. Yang, X. Li, W. Zhu, J. Wang, C. Descorme, Carbon 46 (2008) 445. https://doi.org/10.1016/j.carbon.2007.12.006
  60. S. Lim, S.H. Yoon, Y. Shimizu, H. Jung, I. Mochida, Langmuir 20 (2004) 5559. https://doi.org/10.1021/la036077t
  61. R.M. Singhal, A. Sharma, N. Verma, Ind. Eng. Chem. Res. 47 (2008) 3700. https://doi.org/10.1021/ie071114n
  62. M. Abecassis-Wolfovich, M.V. Landau, A. Brenner, M. Herskowitz, Ind. Eng. Chem. Res. 43 (2004) 5089. https://doi.org/10.1021/ie049756n
  63. S. Keav, A. Martin, J. Barbier, D. Duprez, C. R. Chim. 13 (2010) 508. https://doi.org/10.1016/j.crci.2010.02.001
  64. A. Pintar, J. Levec, J. Catal. 135 (1992) 345. https://doi.org/10.1016/0021-9517(92)90038-J
  65. Z.P.G. Masende, B.F.M. Kuster, K.J. Ptasinski, F. Janssen, J.H.Y. Katima, J.C. Schouten, Catal. Today 79-80 (2003) 357. https://doi.org/10.1016/S0920-5861(03)00064-6

Cited by

  1. Efficient removal of bisphenol A from wastewaters: Catalytic wet air oxidation with Pt catalysts supported on Ce and Ce-Ti mixed oxides vol.6, pp.1, 2019, https://doi.org/10.3934/matersci.2019.1.25
  2. Fiber-polyquaterniums@Cu(I) as recyclable polymer-supported copper complex catalysts for alkyne coupling and cycloaddition reactions vol.69, pp.None, 2018, https://doi.org/10.1016/j.jiec.2018.09.047
  3. Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process vol.9, pp.6, 2018, https://doi.org/10.3390/catal9060516
  4. Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part II: Activity, Nature and Stability vol.9, pp.6, 2019, https://doi.org/10.3390/catal9060518
  5. Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications vol.25, pp.6, 2018, https://doi.org/10.3390/molecules25061434