• Title/Summary/Keyword: RCP 시나리오

Search Result 380, Processing Time 0.029 seconds

Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed (기후변화와 토지이용변화가 도시화 진행 유역수문에 미치는 영향 평가)

  • Ahn, So Ra;Jang, Cheol Hee;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.567-577
    • /
    • 2015
  • Climate and land use changes have impact on availability water resource by hydrologic cycle change. The purpose of this study is to evaluate the hydrologic behavior by the future potential climate and land use changes in Anseongcheon watershed ($371.1km^2$) using SWAT model. For climate change scenario, the HadGEM-RA (the Hadley Centre Global Environment Model version 3-Regional Atmosphere model) RCP (Representative Concentration Pathway) 4.5 and 8.5 emission scenarios from Korea Meteorological Administration (KMA) were used. The mean temperature increased up to $4.2^{\circ}C$ and the precipitation showed maximum 21.2% increase for 2080s RCP 8.5 scenario comparing with the baseline (1990-2010). For the land use change scenario, the Conservation of Land Use its Effects at Small regional extent (CLUE-s) model was applied for 3 scenarios (logarithmic, linear, exponential) according to urban growth. The 2100 urban area of the watershed was predicted by 9.4%, 20.7%, and 35% respectively for each scenario. As the climate change impact, the evapotranspiration (ET) and streamflow (ST) showed maximum change of 20.6% in 2080s RCP 8.5 and 25.7% in 2080s RCP 4.5 respectively. As the land use change impact, the ET and ST showed maximum change of 3.7% in 2080s logarithmic and 2.9% in 2080s linear urban growth respectively. By the both climate and land use change impacts, the ET and ST changed 19.2% in 2040s RCP 8.5 and exponential scenarios and 36.1% in 2080s RCP 4.5 and linear scenarios respectively. The results of the research are expected to understand the changing water resources of watershed quantitatively by hydrological environment condition change in the future.

Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model (CMIP5 기반 건기 및 우기 시 국내 하천유량의 변화전망 및 분석)

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1091-1103
    • /
    • 2018
  • Having knowledge regarding to which region is prone to drought or flood is a crucial issue in water resources planning and management. This could be more challenging when the occurrence of these hazards affected by climate change. In this study the future streamflow during the wet season (July to September) and dry season (October to March) for the twenty first century of South Korea was investigated. This study used the statistics of precipitation, maximum and minimum temperature of one global climate model (i.e., INMCM4) with 2 RCPs (RCP4.5 and RCP8.5) scenarios as inputs for The Precipitation-Runoff Modelling System (PRMS) model. The PRMS model was tested for the historical periods (1966-2016) and then the parameters of model were used to project the future changes of 5 large River basins in Korea for three future periods (2025s, 2055s, and 2085s) compared to the reference period (1976-2005). Then, the different responses in climate and streamflow projection during these two seasons (wet and dry) was investigated. The results showed that under INMCM4 scenario, the occurrence of drought in dry season is projected to be stronger in 2025s than 2055s from decreasing -7.23% (-7.06%) in 2025s to -3.81% (-0.71%) in 2055s for RCP4.5 (RCP8.5). Regarding to the far future (2085s), for RCP 4.5 is projected to increase streamflow in the northern part, and decrease streamflow in the southern part (-3.24%), however under RCP8.5 almost all basins are vulnerable to drought, especially in the southern part (-16.51%). Also, during the wet season both increasing (Almost in northern and western part) and decreasing (almost in the southern part) in streamflow relative to the reference period are projected for all periods and RCPs under INMCM4 scenario.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios (RCP 기후변화 시나리오에 따른 임하댐 유역의 미래 수문순환 전망)

  • Jang, Sun-Sook;Ahn, So-Ra;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.156-169
    • /
    • 2015
  • This study was to evaluate the RCP climate change impact on hydrological components in the Imha-Dam watershed using SWAT(Soil and Water Assessment Tool) Model. The model was calibrated for six year(2002~2007) and validated for six year(2008~2013) using daily observed streamflow data at three watershed stations. The overall simulation results for the total released volume at this point appear reasonable by showing that coefficient of determination($R^2$) were 0.70~0.85 and Nash-Sutcliffe model efficiency(NSE) were 0.67-0.82 for streamflow, respectively. For future hydrologic evaluation, the HadGEM3-RA climate data by scenarios of Representative Concentration Pathway(RCP) 4.5 and 8.5 of the Korea Meteorological Administration were adopted. The biased future data were corrected using 34 years(1980~2013, baseline period) of weather data. Precipitation and temperature showed increase of 10.8% and 4.9%, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, soil moisture, surface runoff, lateral flow, return flow and streamflow showed changes of +11.2%, +1.9%, +10.0%, +12.1%, +18.2%, and +11.2%, respectively.

Effect of Climate Changes on the Distribution of Productive Areas for Quercus mongolica in Korea (기후변화가 신갈나무의 적지분포에 미치는 영향)

  • Lee, Young Geun;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.605-612
    • /
    • 2014
  • This study was conducted to predict the changes of yearly productive area distribution for Quercus mongolica under climate change scenarios. For this, site index equations by ecoprovinces were first developed using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Two climate change scenarios, RCP 4.5 and RCP 8.5, were then applied to the developed site index equations and the distribution of productive areas for Quercus mongolica were predicted from 2020 to 2100 years in 10-year intervals. The results from this study show that the distribution of productive areas for Quercus mongolica generally decreases as time passes. It was also found that the productive area distribution of Quercus mongolica is different over time under two climate change scenarios. The RCP 8.5 which is more extreme climate change scenario showed much more decreased distribution of productive areas than the RCP 4.5. It is expected that the study results on the amount and distribution of productive areas over time for Quercus mongolica under climate change scenarios could provide valuable information necessary for the policies of suitable species on a site.

Future water supply risk analysis using a joint drought management index in Nakdong river basin (결합가뭄관리지수(JDMI)를 이용한 낙동강 유역의 미래 용수공급 위험도 분석)

  • Yu, Ji Soo;Choi, Si-Jung;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1117-1126
    • /
    • 2018
  • Water supply system aims to meet the user's demand by securing water resources in a stable way. However, water supply failure sometimes happens because inflow decreases during drought period. Droughts induced by the lack of precipitation do not always lead to water supply failures. Thus, it is necessary to consider features of actual water shortage event when we evaluate a water supply risk. In this study, we developed a new drought index for drought management, i.e., Joint Drought Management Index (JDMI), using two water supply system performance indices such as reliability and vulnerability. Future data that were estimated from GCMs according to RCP 4.5 and 8.5 scenarios were used to estimate future water supply risk. After dividing the future period into three parts, the risk of water supply failure in the Nakdong River basin was analyzed using the JDMI. As a result, the risk was higher with the RCP 4.5 than the RCP 8.5. In case of RCP 4.5, W18 (Namgangdam) was identified as the most vulnerable area, whereas in case of RCP 8.5, W23 (Hyeongsangang) and W33 (Nakdonggangnamhae) were identified as the most vulnerable area.

Vulnerability Assessment on Spring Drought in the Field of Agriculture (농업지대 봄 가뭄에 대한 취약성 평가)

  • Lee, Yong-Ho;Oh, Young-Ju;Na, Chae-Sun;Kim, Myung-Hyun;Kang, Kee-Kyung;Yoon, Seong-Tak
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.397-407
    • /
    • 2013
  • Seasons in Korea have very distinguishable features. Due to continental high pressure, spring in Korea is dry and has low precipitation. Due to climate change derived from the increase of greenhouse gases, climate variability had increased and it became harder to predict. This caused the spring drought harsher than usual. Since 1990s, numbers of chronic drought from winter to spring increased in southern regions of Korea. Such drought in the spring damages the growth and development of the crops sown in the spring and decreases its quantity. For stable agricultural production in the future, it is necessary to assess vulnerability of the relationship between spring drought and agricultural production as well as to establish appropriate measures accordingly. This research used CCGIS program to perform vulnerability assessment on spring drought based on climate change scenario SRES A1B, A1FI, A1T, A2, B1, B2 and RCP 8.5 in 232 regions in Korea. As a result, Every scenario showed that vulnerability of spring drought decreased from 2000s to 2050s. Ratio of decrease was 37% under SRES scenario but, 3% under RCP 8.5 scenario. Also, for 2050 prediction, every scenario predicted the highest vulnerability in Chungcheongnam-do. However, RCP-8.5 predicted higher vulnerability in Gyeonggi-do than SRES scenario. The reason for overall decrease in vulnerability of agriculture for future spring drought is because the increase of precipitation was predicted. The assessment of vulnerability by different regions showed that choosing suitable scenario is very important factor.

Low-Flow Projection according to the Actual Evapotranspiration scenarios under the Climate Change -Chungju Dam Case- (기후변화 실제증발산 시나리오에 따른 갈수량전망 - 충주댐 사례 -)

  • Sun, HoYoung;Kang, BooSik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.104-104
    • /
    • 2018
  • 이수안전도의 기준이 되는 갈수량에 대해 기후변화 시나리오에 따른 전망을 제시하였다. 충주 댐 유역을 대상으로 기준기간(1986~2000년)에서의 기상청의 관측 기상자료와 IPCC 보고서의 RCP 4.5/8.5 시나리오를 대상으로 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 5개의 모델(ACCESS1.3 CanESM2, CNRM-CM5, GFDL-ESM2G, HadGEM2-AO)의 기준기간과 미래기간(2011~2100년)의 기상자료를 수집하였다. 기후변화 자료는 정상성/비정상성 분위사상법과 베이지안 모델 평균기법을 통해 불확실성과 통계적 오차를 저감하였다. 미래기간에서, 강우는 RCP 4.5에서 1.74mm/year, RCP 8.5에서 3.22mm/year, 실제증발산은 RCP 4.5에서 1.09mm/year, RCP 8.5에서 1.78mm/year의 증가율을 보였다. 실제증발산을 입력자료로 활용할 수 있도록 IHACRES모델의 CMD(Catchment Moisture Deficit) 비선형 모듈의 매개변수를 변이하여 유효강우량 산정 과정을 개선하였다. 기준기간에서 관측유량자료와 IHACRES의 시뮬레이션을 통해 산정된 유량자료의 R-squared는 0.65이다. 기준기간에서의 매개변수를 고정하여 미래기간의 유량을 산정하고 유황분석을 통해 갈수량 전망하였다. 유량은 RCP 4.5에서 4.41MCM/year, RCP 8.5에서 9.66MCM/year의 증가율을 보였다. 갈수량은 RCP 4.5에서 0.30MCM/year, RCP 8.5에서 -0.47MCM/year의 증감율을 보였다. 연간 강수량 대비 실제증발산의 비율의 추세분석 결과, RCP 4.5에서는 홍수기에는 0.014%/year, 비홍수기에는 0.027%/year의 증가율을 보이며 거의 변화가 없는 추세를 확인할 수 있었다. RCP 8.5의 홍수기에는 -0.042%/year, 비홍수기에서는 0.167%/year의 증감율을 보이며 홍수기에는 실제증발산에 비해 강수량의 증가가 확연히 보였으며 비홍수기에는 강수량에 비해 실제증발산의 증가가 뚜렷이 확인되었다. RCP 8.5에서 비홍수기의 강수량 대비 실제증발산의 증가가 갈수량의 감소로 반영된 것을 확인할 수 있었다. 미래기간의 RCP 4.5/8.5에서 실제증발산의 증가로 인하여 강수량이 증가함에 따라 유입량이 증가함에도 불구하고 갈수량의 증가로 이어지지 않았다. 미래 갈수량의 감소는 하천의 건전성과 이수안전도의 위협이 될 수 있다.

  • PDF

Predict of Pollutant Loading Amount Change to Climate Change Using Basin Model Adaptability (기후 변화에 따른 오염부하량 변화를 예측하기 위한 유역모델 적용성 분석)

  • Jang, Yujin;Park, Jongtae;Koo, Youngmin;Seo, Dongil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.269-273
    • /
    • 2016
  • 세계적으로 기후변화와 관련한 연구가 증가하고 있다. 국내에서도 기후변화에 따른 수문학적 변화에 대한 연구가 주를 이루어 진행되고 있지만 오염부하량 변화에 대한 연구는 미흡하다. 또한 모형을 이용한 기후변화 예측에 있어 SWAT 모형이 주를 이루어 연구가 진행되고 있다. 본 연구는 기후변화 시나리오인 RCP시나리오 중 RCP 4.5와 RCP 8.5의 자료를 이용하여 용담댐 유역을 대상으로 기후변화에 따른 오염부하량을 예측하기 위하여 GWLF, SWAT 및 SWMM 모형을 선정하여 분석하였다. SWAT, GWLF 및 SWMM에 대하여 적용성 평가를 수행하였다. 기후변화에 따른 미래의 오염부하량을 예측한 결과 모델의 특성 등에 따라 결과가 다르게 나타났다.

  • PDF