DOI QR코드

DOI QR Code

Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model

CMIP5 기반 건기 및 우기 시 국내 하천유량의 변화전망 및 분석

  • Ghafouri-Azar, Mona (Department of Civil & Environmental Engineering, Sejong University) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University)
  • Received : 2018.08.28
  • Accepted : 2018.11.13
  • Published : 2018.11.30

Abstract

Having knowledge regarding to which region is prone to drought or flood is a crucial issue in water resources planning and management. This could be more challenging when the occurrence of these hazards affected by climate change. In this study the future streamflow during the wet season (July to September) and dry season (October to March) for the twenty first century of South Korea was investigated. This study used the statistics of precipitation, maximum and minimum temperature of one global climate model (i.e., INMCM4) with 2 RCPs (RCP4.5 and RCP8.5) scenarios as inputs for The Precipitation-Runoff Modelling System (PRMS) model. The PRMS model was tested for the historical periods (1966-2016) and then the parameters of model were used to project the future changes of 5 large River basins in Korea for three future periods (2025s, 2055s, and 2085s) compared to the reference period (1976-2005). Then, the different responses in climate and streamflow projection during these two seasons (wet and dry) was investigated. The results showed that under INMCM4 scenario, the occurrence of drought in dry season is projected to be stronger in 2025s than 2055s from decreasing -7.23% (-7.06%) in 2025s to -3.81% (-0.71%) in 2055s for RCP4.5 (RCP8.5). Regarding to the far future (2085s), for RCP 4.5 is projected to increase streamflow in the northern part, and decrease streamflow in the southern part (-3.24%), however under RCP8.5 almost all basins are vulnerable to drought, especially in the southern part (-16.51%). Also, during the wet season both increasing (Almost in northern and western part) and decreasing (almost in the southern part) in streamflow relative to the reference period are projected for all periods and RCPs under INMCM4 scenario.

한반도는 계절 및 지리적 위치에 따라 강수특성이 상이하여 수자원 관리 및 계획수립 시 홍수, 가뭄을 사전에 대비하는 것이 매우 중요하다. 더욱이 기후변화로 인한 강수 및 기온의 변화는 홍수 및 가뭄 등 수재해의 변동을 더욱 심화시킬 것으로 예상된다. 본 연구에서는 남한 5대강(한강, 낙동강, 금강, 섬진강, 영산강)을 대상으로 기후변화에 따른 우기(7~9월)와 건기(10~3월)에서의 미래 하천유량의 변화를 전망 및 분석하고자 한다. 이를 위해 CMIP5의 핵심실험인 2개 RCP 시나리오(RCP4.5, RCP8.5)를 이용하였으며, 적정 GCM (INMCM4 모형)을 선정하였다. 5대강 유역의 유량을 전망하기 위해 상세화된 기후변화 시나리오를 장기 강우-유출모형(PRMS 모형)의 입력으로 하여 유량해석을 수행하였다. 장기간의 자료를 활용하여 PRMS의 모형 매개변수를 추정하였으며, 과거기간(1976~2005년) 대비 미래 3기간(2025s, 2055s, and 2085s)에 대한 우기 및 건기시의 유량변화를 분석하였다. 평가결과, 건기에서의 유출량 감소는 RCP8.5 시나리오 대비 RCP4.5 시나리오에서 더 크게 나타났으며, RCP4.5 시나리오 하에서 2025s, 2055s 기간의 유출량은 -7.23%, -3.81% 감소하는 것으로 나타나 가까운 미래(2025s) 기간에서의 유출량 감소가 더욱 클 것으로 전망되었다. 먼 미래(2085s) 기간의 경우, 북부지역은 유량이 증가, 남부지역은 유량이 감소하는 것으로 나타났다. 한편, RCP 8.5 시나리오 하에서는 남부지역을 포함한 대부분의 지역이 가뭄에 대한 취약성이 높아지는 것으로 나타났다. 우기에서의 유출량 변화는 2개 RCP 시나리오 및 미래 전 기간에서 지역에 따라 유량이 증가(북부 및 서부지역) 또는 감소(남부)하는 것으로 나타났다.

Keywords

SJOHCI_2018_v51nspc_1091_f0001.png 이미지

Fig. 1. Study area, 5 large river basins and location of 6 major dams

SJOHCI_2018_v51nspc_1091_f0002.png 이미지

Fig. 2. Change in seasonal temperature and precipitation for 2025s (2011-2040), 2055s (2041-2070) and 2085s (2071-2099) relative to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

SJOHCI_2018_v51nspc_1091_f0003.png 이미지

Fig. 3. Relative variations (%) of mean annual precipitation for dry season during 2025s (2011-2040), 2055s (2041-2070), and 2085s (2071-2099) with respect to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

SJOHCI_2018_v51nspc_1091_f0004.png 이미지

Fig. 4. Relative variations (%) of mean annual precipitation for wet season during 2025s (2011-2040), 2055s (2041-2070), and 2085s (2071-2099) with respect to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

SJOHCI_2018_v51nspc_1091_f0005.png 이미지

Fig. 5. Relative variations (%) of mean annual actual evapotranspiration for dry season during 2025s (2011-2040), 2055s (2041-2070), and 2085s (2071-2099) with respect to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

SJOHCI_2018_v51nspc_1091_f0006.png 이미지

Fig. 6. Relative variations (%) of mean annual actual evapotranspiration for wet season during 2025s (2011-2040), 2055s (2041-2070), and 2085s (2071-2099) with respect to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

SJOHCI_2018_v51nspc_1091_f0007.png 이미지

Fig. 7. Relative variations (%) of mean annual streamflow for dry season during 2025s (2011-2040), 2055s (2041-2070), and 2085s (2071-2099) with respect to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

SJOHCI_2018_v51nspc_1091_f0008.png 이미지

Fig. 8. Relative variations (%) of mean annual streamflow for wet season during 2025s (2011-2040), 2055s (2041-2070), and 2085s (2071-2099) with respect to the reference period (1976-2005) for RCP 4.5 and RCP 8.5

Table 1. Sensitive parameters of the PRMS model

SJOHCI_2018_v51nspc_1091_t0001.png 이미지

Table 2. Calibration and verification periods

SJOHCI_2018_v51nspc_1091_t0002.png 이미지

Table 3. Statistical analysis of 6 dams in calibration and verification periods

SJOHCI_2018_v51nspc_1091_t0003.png 이미지

Table 4. Optimized values for model parameters

SJOHCI_2018_v51nspc_1091_t0004.png 이미지

References

  1. Bae, D. H., Jung, I. W., and Chang, H. (2008). "Potential changes in Korean water resources estimated by high-resolution climate simulation." Climate Research, Vol. 35, No. 3, pp. 213-226. https://doi.org/10.3354/cr00704
  2. Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., and Dettinger, M.D. (2008). "Human-induced changes in the hydrology of the western United States." Science, No. 319(5866), pp. 1080-1083. https://doi.org/10.1126/science.1152538
  3. Burnham, M., Ma, Z., Endter-Wada, J., and Bardsley, T. (2016). "Water Management Decision Making in the Face of Multiple Forms of Uncertainty and Risk." Journal of American Water Resources Association, No. 52, pp. 1-19.
  4. Cannon, A. J., Sobie, S. R., and Murdock, T. Q. (2015). "Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?" Journal of climate, Vol. 28, pp. 6938-6959. https://doi.org/10.1175/JCLI-D-14-00754.1
  5. Chang, H., and Jung, I.W. (2010). "Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon." Journal of Hydrology, Vol. 388, Issues 3-4, pp. 186-207. https://doi.org/10.1016/j.jhydrol.2010.04.040
  6. Eum, H. I., and Cannon, A. J. (2017) "Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International of Journal of Climatology, Vol. 37, pp. 3381-3397. https://doi.org/10.1002/joc.4924
  7. Hamon, W. R. (1961). "Estimating potential evapotranspiration." Proceedings of the American Society of Civil Engineers, Journal of the Hydraulic Division 87(HY3), pp. 107-120.
  8. Hong, H. P., Park, S. Y., Kim, T. W., and Lee, J. H. (2018). "Assessment of CMIP5 GCMs for future extreme drought analysis." Journal of Korea Water Resources Association, Vol. 51, No. 7, pp. 617-627 https://doi.org/10.3741/JKWRA.2018.51.7.617
  9. Hwang, S., Cho, J., and Yoon, K. S. (2018). "Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia." Journal of Korea Water Resources Association, Vol. 51, No. 8, pp. 629-642. https://doi.org/10.3741/JKWRA.2018.51.8.629
  10. Katsavounidis, I., C.-C. J. Kuo, and Z. Zhang. (1994). "A new initialization technique for generalized Lloyd iteration." IEEE Signal Processing Letters, Vol. 1, pp. 144-146. https://doi.org/10.1109/97.329844
  11. Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Doll, P., Kabat, P., Jimenez, B., Miller, K. A., Oki, T., Sen, Z., Shiklomanov, I. A (2007). "Freshwater resources and their management, Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, Cambridge, UK, pp. 173-210.
  12. Leavesley, G. H., Lichty, R. W., Troutman, B. M., Saindon, L. G. (1983). Precipitation-runoff modeling system: user's manual. US Geological Survey Water Resources Investigation Report, 83-4238.
  13. Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A., and LaFontaine, J. H. (2015) "PRMS-IV, the precipitation-runoff modeling system, version 4: U.S. Geological Survey Techniques and Methods." book 6, chap. B7, pp. 1-158.
  14. Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R.D., and Veith, T. (2007) "Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  15. Refsgaard, J. C. (1997). "Parameterisation, calibration, and validation of distributed hydrological models." Journal of Hydrology, Vol. 198, No. 1, pp. 69-97. https://doi.org/10.1016/S0022-1694(96)03329-X
  16. Volodin, E. M., Dianskii, N. A., and Gusev, A. V. (2010). "Simulating Present Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations." Journal of Atmospheric and Oceanic Physics, (2010) 46: 414.
  17. Yoon, S. K., and Cho, J. (2015). "The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 817-830. https://doi.org/10.3741/JKWRA.2015.48.10.817
  18. Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A.K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, (2011). "Indices for monitoring changes in extremes based on daily temperature and precipitation data." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, No. 6, pp. 851-870. https://doi.org/10.1002/wcc.147