• Title/Summary/Keyword: RC member

Search Result 281, Processing Time 0.027 seconds

Reliability analysis of concrete bridges designed with material and member resistance factors

  • Paik, Inyeol;Hwang, Eui-Seung;Shin, Soobong
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.59-78
    • /
    • 2009
  • Reliability analysis for a proposed limit state bridge design code is performed. In order to introduce reliability concept to design code, the proposed live load model is based on truck weight survey. Test data of domestic material strengths are collected to model statistical properties of member strengths. Sample RC and PSC girder sections are designed following the safety factor format of the proposed code and compared with the current design practice. Reliability indexes are calculated and examined for material and member resistance factor formats and sample calibrations of safety factors are presented. It is concluded that the proposed code provides reasonable level of reliability compared to the international design standards.

Nonlinear Numerical Analysis for Shear Dominant RC Columns Subjected to Lateral Force (전단거동이 우세한 기둥의 비선형 해석에 관한 연구)

  • Kim Ick-Hyun;Sun Chang-Ho;Lee Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.467-476
    • /
    • 2004
  • Because of crack control by steel bars after cracking the material models for reinforced concrete(RC) differ from those for plain concrete(PL). The nonlinear behavior of columns subjected to lateral load was simulated with reasonable accuracy in 3D analysis by applying distinct material models for RC and PL zone subdivided properly on the section. The shear strain is confirmed to develope unstably with ununiform distribution in out-of-plane direction. And this tendency becomes stronger as the thickness of column member increases in out-of-plane direction. If this ununiformity in strain distribution is not taken into consideration the capacity and the deformability of columns in shear dominant failure are overestimated excessively in two dimensional analysis. By introducing equivalent softening model a behavior of columns can be predicted too in two dimensional analysis.

Nonlinear Analysis of Cyclic Lateral Forced RC Shear Wall (반복 횡하중을 받는 철근콘크리트 전단벽의 비선형 해석)

  • Kim, Geon-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Practicing engineers and researchers need computational tools that estimate accurately the cyclic response of RC walls, and in particular, force and deformation capacities and their materials strains. So this paper describes a nonlinear truss modeling approach for reinforced concrete walls, or in general, for plane stress reinforced concrete elements subjected to cyclic reversals. Nonlinear vertical, horizontal, and diagonal truss elements are used to represent concrete and steel reinforcement. The wall having aspect ratio of 1.2 was chosen to be compared with the experimental results. Here, four types of main diagonal member models and three types of diagonal members models were applied to find out more accurate results of analysis.

Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace (철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구)

  • Yoo, Suk-Hyeong;Ko, Kwan-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • Recently, damage to buildings due to earthquakes in Korea occurred mainly in school buildings and Piloti-type multi-family houses, highlighting the need for seismic retrofit for buildings of the same type. In the early days of the seismic retrofit project for school facilities, various patented methods using dampers as a ductile seismic retrofit method were applied without sufficient verification procedures. However, in 「School Facility Seismic Performance Evaluation and Retrofit Manual, 2021」, when the patented method is applied, it must be applied through a separate strict verification procedure, and instead, the strength/stiffness retrofit method was induced as a general method. In practice,when evaluating seismic performance for retrofit by infilled steel frame with brace, the analysis model is constructed by directly connecting only the steel brace to the existing RC member. However, if the frame is removed from the analysis model of the infilled steel frame with brace, the force reduction occurring on the existing RC member near the retrofit is considered to be very large, and this is judged to affect the review of whether to retrofit the foundation or not. Therefore, in this study, preliminary analysis with variables such as whether or not steel frame is taken into account and frame link method for the analysis model of RC school building retrofitted by infilled steel frame with brace and nonlinear analysis for actual 3-story school building was performed, and basic data for rational analysis model setting were presented by comparing preliminary analysis and pushover analysis results for each variable.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(I): Focused on the Compressive Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(I): 압축부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.39-46
    • /
    • 2022
  • As the limit state design method is applied as the design method of reinforced concrete structure, the ultimate state is considered when analyses or designing. In fact, when the reinforced concrete member is bent, there is a confining effect by stirrup, but the material curve of unconfined concretes applied when designing. In this study, to evaluate the suitability of the confined concrete model for flexural members, a 4-point bending test was conducted on RC simple beam with a double-reinforced rectangular cross-section, and the behavior of the member after yield was analyzed in detail using image processing method. For detailed analysis, the DIC method was adopted as an image analysis method, and the validity of DIC method was verified by comparing the measurement results with the LVDT. The distribution of the strain on the concrete surface calculated as a result of the DIC method could be obtained, and the average strain distribution of the cross-section was calculated. Using the average strain distribution, the stress distribution applied existing confined concrete model as a material curve could be derived. Through the comparison of the experimental results and the existing model application results, the suitability of the confined concrete model for RC flexural members having a rectangular cross-section was evaluated.

Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 구조거동)

  • Kim, Sung Bae;Kim, Hyun Young;Yi, Na Hyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.543-550
    • /
    • 2009
  • This study was performed to prove the possibility of utilizing short plastic fibers made for recycled polyethylene terephthalate (RPET) as a structural material. In order to verify the capacity of RPET fiber, it was compared with polypropylene (PP) fiber, most widely used short synthetic fiber, for fiber volume fraction of 0%, 0.5%, 0.75%, and 1.0%. To measure material properties such as compressive strength, split tensile strength, appropriate tests were performed. Also, to measure the strength and ductility capacities of reinforced concrete (RC) member casted with RPET fiber added concrete, flexural test was performed on RC beams. The results showed that compressive strength decreased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. Split cylinder tensile strength of RPET fiber reinforced concrete increased slightly as fiber volume fraction increased. For structural member performance, ultimate strength, relative ductility and energy absorption of RPET added RC beam are significantly larger than OPC specimen. Also, the results showed that ultimate flexural strength and ductility both increased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. The study results indicate that RPET fiber can be used as an effective additional reinforcing material in concrete members.

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

Progressive collapse analysis of a RC building subjected to blast loads

  • Almusallam, T.H.;Elsanadedy, H.M.;Abbas, H.;Alsayed, S.H.;Al-Salloum, Y.A.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.301-319
    • /
    • 2010
  • The paper seeks to explore some aspects of the current state of knowledge on progressive collapse in the technical literature covering blast loads and structural analysis procedure applicable to reinforced concrete (RC) buildings. The paper describes the progressive collapse analysis of a commercial RC building located in the city of Riyadh and subjected to different blast scenarios. A 3-D finite element model of the structure was created using LS-DYNA, which uses explicit time integration algorithms for solution. Blast loads were treated as dynamic pressure-time history curves applied to the exterior elements. The inherent shortcomings of notional member removal have been taken care of in the present paper by simulating the damage of structural elements through the use of solid elements with the provision of element erosion. Effects of erosion and cratering are studied for different scenarios of the blast.

Mesoscale computational simulation of the mechanical response of reinforced concrete members

  • Wang, Licheng;Bao, Jiuwen
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2015
  • On mesoscopic level, concrete can be treated as a three-phase composite material consisting of mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with the available test results. It is found that the numerical results are in good agreement with the experimental observations, indicating that the model can successfully simulate the failure process of the RC members.

Flexural performance of fire damaged and rehabilitated two span reinforced concrete slabs and beams

  • Yu, Jiang-Tao;Liu, Yuan;Lu, Zhou-Dao;Xiang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.799-813
    • /
    • 2012
  • Five two-span reinforced concrete (RC) slabs and seven two-span RC beams were tested under the ISO 834 standard fire with different durations. CFRP strengthening was then applied to some of the specimens after the damaged concrete was removed from the specimens and replaced with polymer mortar. All the specimens were loaded to failure to investigate the influence of fire-damage and the effectiveness of strengthening methods. Test results indicated that the flexural capacities of specimens decrease with the fire duration increases. Moreover, fire exposure had more significant effect on the flexural rigidity than on the bearing capacity of the specimens. After rehabilitation, the bearing capacities of specimens reached or even exceeded that of the reference RC specimen, and the strengthening methods seemed to have limited effect on flexural rigidity recovery. From the analysis of moment redistribution of tested beams, elevated temperature is found having different impacts on sagging moment region and hogging moment region. The damage of RC continuous member is definitely a comprehensive response of different regions.