• Title/Summary/Keyword: RC member

Search Result 281, Processing Time 0.027 seconds

The Study on Local Composite Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관 말뚝 기초 두부 연결부의 합성거동에 대한 연구)

  • You, Sung-Kun;Park, Jong-Myen;Park, Dae-Yong;Kim, Young-Ho;Kang, Won-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.288-296
    • /
    • 2003
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the related specification, type B-method is provident. To investigate real structural behavior of type B connection, several load tests are done with carefully designed experimental system. The purpose of this experiment is mainly focused on the understanding of actual behavior which can be predicted by design theory. At this research stage, vertical and lateral loading test are done for three types of specimen to review stress concentration, formation and behavior of imaginary RC column in the footing and effect of non-slip device installed in the steel pipe pile. The load resistance mechanism in these specific connection method is predicted based on both experimental results. The three-dimensional finite element modeling is also done for the purpose of comparison between numerical and experimental result. With all the results gained from experiment the structural behavior of imaginary RC column in the design concept is confirmed. The role of non-slip device is very important and it affects the resistance capacity with help of composite action of concrete and steel pipe pile.

The Properties for Structural Behavior of Beam-Column Joint Consisting of Composite Structure (혼합구조로 이루어진 보-기둥 접합부의 구조적 거동 특성)

  • Lee, Seung Jo;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.445-455
    • /
    • 2000
  • This study proposed to beam-column joint model consisting of different type structural member to develop new structural system in the structural viewpoint as to a method to overcome various problem according to change of construction environment. This study promoted rigidity and capacity to stiffen reinforced concrete for steel structure end to increase rigidity of long spaned steel beam, and welt to steel flange to anchor U-shaped main bar of SRC structure end to easy stress flow between the different type structure. Through the series of experiments, proposed to possibility of this joint model, and investigated joint rigidity and capacity.

  • PDF

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

Evaluation of Damage Indices for RC Bridge Piers with Premature Termination of Main Reinforcement Using Inelastic FE Analysis (비탄성 유한요소해석을 이용한 주철근 단락을 갖는 철근콘크리트 교각의 손상지수 평가)

  • 김태훈;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2001
  • In this paper, inelastic analysis procedures are presented for the seismic performance evaluation of RC bridge piers with premature termination of main reinforcement. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bars and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The proposed numerical method for seismic performance evaluation of RC bridge piers with premature termination of main reinforcement will be verified by comparison with reliable experimental results.

  • PDF

Changes in Service life in RC Containing OPC and GGBFS Considering Effects of Loadings and Cold Joint (OPC 및 GGBFS를 혼입한 콘크리트의 하중조건과 콜드조인트에 따른 내구수명 변화)

  • Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.466-473
    • /
    • 2017
  • RC (Reinforced Concrete) member has varying service life due to varying diffusion characteristics with loading conditions even if it is exposed to constant exterior conditions. In the paper, quantitative parameters are obtained through adopting the previous results for effects of compressive, tensile, and cold joint on chloride diffusion in OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete. Service life is evaluated in RC simple beam with 10.0m of span through increasing loading from self weight (2.5kN/m) to the loading to cracking moment (5.5kN/m). In OPC concrete without cold joint, service life changes to 89.4% for tensile region and 101% for compressive region with loadings while GGBFS concrete has 80.0% and 106%, respectively. For cold joint area, GGBFS concrete shows much reduced service life to 82~80% in compressive region and 69~61% in tensile region, which is caused by the lower diffusion in normal condition but relatively higher increasing cold joint effect than OPC concrete.

Generalized Analysis of RC and PT Flat Plates Using Limit State Model (한계상태모델을 이용한 철근콘크리트와 포스트텐션 무량판의 통합해석)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.599-609
    • /
    • 2009
  • This paper discusses generalized modeling schemes for both reinforced concrete (RC) and post-tensioned (PT) flat plate buildings. In this modeling approach, nonlinear behavior due to slab flexure, moment and shear transfer at slab-column connections, and punching shear was included along with linear secant stiffness of each member or connection that accounts for concrete cracking. This generalized model was capable of simulating all different scenarios of slab-column connection failures such as brittle punching, flexure-shear interactive failure, and flexural failure followed by drift-induced punching. Furthermore, automatic detection of drift-induced punching shear and subsequent backbone curve modifications were realistically modelled by incorporating the limit state model, in which gravity shear versus drift capacity relations were adopted. The validation of the model was conducted using one-third scale two-story by two-bay RC and PT flat plate frames. The comparisons revealed that the model was robust and effective.

Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite

  • Kamanli, Mehmet;Korkmaz, Hasan H.;Unal, Alptug;Balik, Fatih S.;Bahadir, Fatih;Cogurcu, Mustafa T.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.761-778
    • /
    • 2015
  • The objective of this paper is to report the result of an experimental program conducted on the strengthening of nonductile RC frames by using external mesh reinforcement and plaster application. The main objective was to test an alternative strengthening technique for reinforced concrete buildings, which could be applied with minimum disturbance to the occupants. Generic specimen is two floors and one bay RC frame in 1/2 scales. The basic aim of tested strengthening techniques is to upgrade strength, ductility and stiffness of the member and/or the structural system. Six specimens, two of which were reference specimens and the remaining four of which had deficient steel detailing and poor concrete quality were strengthened and tested in an experimental program under cyclic loading. The parameters of the experimental study are mesh reinforcement ratio and plaster thickness of the infilled wall. The effects of the mesh reinforced plaster application for strengthening on behavior, strength, stiffness, failure mode and ductility of the specimens were investigated. Premature and unexpected failure mode has been observed at first and second specimens failed due to inadequate plaster thickness. Also third strengthened specimen failed due to inadequate lap splice of the external mesh reinforcement. The last modified specimen behaved satisfactorily with higher ultimate load carrying capacity. Externally reinforced infill wall composites improve seismic behavior by increasing lateral strength, lateral stiffness, and energy dissipation capacity of reinforced concrete buildings, and limit both structural and nonstructural damages caused by earthquakes.

Retrofit Capacity of Near-Surface-Mounted RC Beam by using FRP Plate (FRP 판으로 표면매입 보강된 철근콘크리트 보의 보강성능)

  • Seo, Soo Yeon;Choi, Ki Bong;Kwon, Yeong Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Recently, research about Near-Surface-Mounted Rertofit (NSMR) method has been being widely performed as a method for retrofit of RC structure using FRP. This method requires additional work to make grooves during retrofit but makes it possible to improve retrofit effect and reduce the attack by environment. In this paper, the retrofit effect of NSMR method, especially the method using FRP plate instead of bar is investigated through experiment. Six RC beams were made and retrofitted using by FRP plate following the planned methods; Surface-Bonding Retrofit (SBR), NSMR without debonding region and NSMR with debonding region. Flexural capacity of all specimens was evaluated by beam test with simple support condition. As a result, NSMR method with FRP plate had more improved structural capacity than SBR method. The calculation process of ACI 440-2R can be used to predict the member retrofitted by NSMR with FRP plate with consideration on the three anchorage failure mechanism.

Service life evaluation in RC structure near to sea shore through accelerated chloride diffusion test (촉진 염화물 시험결과를 이용한 비말대 콘크리트 구조물의 내구수명 평가)

  • Kim, Jeong-Su;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.30-36
    • /
    • 2019
  • In order to evaluate service life of RC (Reinforced Concrete) structures exposed to chloride attack, chloride penetration analysis is required referred to the chloride diffusion coefficient from the actual mix proportions. In this work, accelerated diffusion coefficients are obtained from NT BUILD 492 and ASTM C 1202 and the related apparent diffusion coefficients are derived via the previously proposed relationship for RC structures near to sea shore. Considering the properties of the mix proportions and the most conservative analysis conditions like critical and surface chloride contents, service lifes in column and exterior wall member are evaluated through conventional program LIFE 365 ver.2. The different built-up period of 10 and 15 years has no significant effect on service life. The results from mix proportions with slag show longer than 75 years of service life with the help of higher time dependent parameter and lower initial diffusion coefficient.

Performance-Based Evaluation of Seismic Design Proposals for RC Ordinary Moment Frames by Spectrum Revision (설계스펙트럼의 개정에 따른 철근콘크리트 보통모멘트골조의 내진성능수준 평가)

  • Shim, JungEun;Choi, Insub;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.211-217
    • /
    • 2022
  • New buildings have been designed using different seismic design standards that have been revised. However, the seismic performance of existing buildings is evaluated through the same performance evaluation guidelines. Existing buildings may not satisfy the performance targets suggested in the current guidelines, but there are practical limitations to discriminating the existing buildings with poor seismic performance through a full investigation. In this regard, to classify buildings with poor seismic performance according to the applied standard, this study aimed to evaluate performance-based investigation of the seismic design proposals of buildings with different design standards. The target buildings were set as RC ordinary moment frames for office occupancy. Changes in seismic design criteria by period were analyzed, and the design spectrum changes of reinforced concrete ordinary moment resisting frames were compared to analyze the seismic load acting on the building during design. The seismic design plan was derived through structural analysis of the target model, compared the member force and cross-sectional performance, and a preliminary evaluation of the seismic performance was performed to analyze the performance level through DCR. As a result of the seismic performance analysis through the derived design, the reinforced concrete ordinary moment frame design based on AIK 2000 has an insufficient seismic performance level, so buildings built before 2005 are likely to need seismic reinforcement.