DOI QR코드

DOI QR Code

Changes in Service life in RC Containing OPC and GGBFS Considering Effects of Loadings and Cold Joint

OPC 및 GGBFS를 혼입한 콘크리트의 하중조건과 콜드조인트에 따른 내구수명 변화

  • 김혁중 (금호석유화학 연구소) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2017.10.16
  • Accepted : 2017.12.13
  • Published : 2017.12.30

Abstract

RC (Reinforced Concrete) member has varying service life due to varying diffusion characteristics with loading conditions even if it is exposed to constant exterior conditions. In the paper, quantitative parameters are obtained through adopting the previous results for effects of compressive, tensile, and cold joint on chloride diffusion in OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete. Service life is evaluated in RC simple beam with 10.0m of span through increasing loading from self weight (2.5kN/m) to the loading to cracking moment (5.5kN/m). In OPC concrete without cold joint, service life changes to 89.4% for tensile region and 101% for compressive region with loadings while GGBFS concrete has 80.0% and 106%, respectively. For cold joint area, GGBFS concrete shows much reduced service life to 82~80% in compressive region and 69~61% in tensile region, which is caused by the lower diffusion in normal condition but relatively higher increasing cold joint effect than OPC concrete.

콘크리트 구조물은 동일한 환경에 노출되었다 하더라도 하중특성과 콜드조인트 유무에 따라서 확산특성이 변화하고 이에 따라 내구수명이 변하게 된다. 본 연구에서는 기존의 선행연구를 분석하여 OPC 및 GGBFS를 사용한 콘크리트의 압축특성, 인장특성, 콜드조인트를 고려한 함수를 도출하였다. 경간 10.0m의 단순보를 가정하여 하중을 2.5kN/m에서 균열모멘트에 이르는 5.5kN/m까지 증가시키면서 내구수명을 평가하였다. 최대 하중에 이를 경우, 건전부 OPC 콘크리트의 경우 인장영역에서는 89.4%로, 압축영역에서는 101%로 내구수명이 변화하였으며, GGBFS 콘크리트의 경우 80.0%와 106%의 변화가 발생하였다. 콜드조인트의 경우 GGBFS를 사용한 콘크리트에서는 압축부에서는 82~80%로, 인장부에서는 69~61% 수준으로 크게 감소하였는데, 건전부의 확산계수가 OPC에 비하여 작지만 콜드조인트부의 확산성 증가가 상대적으로 크기 때문이다.

Keywords

References

  1. Abe, Y. (1999). "Result of reference review on crack width effect to carbonation of concrete," Proceeding of Symposium on Rehabilitation of Concrete Structures, 1(1), 7-14.
  2. Arya, C., Newmann, J.B. (1990). Assessment of four methods of determining the free chloride content of concrete, Materials and Structures, 23(5), 319-330. https://doi.org/10.1007/BF02472710
  3. Banthia, N. Biparva, A. Mindess, S. (2005). Permeability of concrete under stress, Cement and Concrete Composites, 35(9), 1651-1655. https://doi.org/10.1016/j.cemconres.2004.10.044
  4. Broomfiled, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, 1-15.
  5. Choi, S.J., Kang, S.P., Kim, S.C., Kwon, S.J. (2015). Analysis technique on water permeability in concrete with cold joint considering micro pore structure and mineral admixture, Advances in Materials Science and Engineering, 2015, 1-10.
  6. Escalante, J.I., Gόmez, L.Y., Johal, K.K., Mendoza, G., Mancha, H., Mendez, J. (2001). Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research, 31(10), 1403-1409. https://doi.org/10.1016/S0008-8846(01)00587-7
  7. Hoseini, M. Bindiganabile, V. Banthia, N. (2009). The effect of mechanical stress on permeability of concrete: a review, Cement and Concrete Composites, 31(4), 213-220. https://doi.org/10.1016/j.cemconcomp.2009.02.003
  8. Ishida, T., Maekawa, K. (2003). "Modeling of durability performance of cementitious materials and structures based on thermohygro physics. In RILEM Proc-PRO29," In RILEM Proc-PRO29, Proceedings of the 2nd International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures, Paris, France, 13-14 May 2003; Naus, D.J., Ed.; RILEM Publications: Paris, France, 2003(1), 39-49.
  9. Ishida, T., Maekawa, K., Kishi, T. (2007). Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history, Cement and Concrete Research, 37(4), 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
  10. JSCE (2000). Concrete Cold Joint Problems and Countermeasures,Concrete Library, 103.
  11. Kim, D.H., Lim, N.G., Horiguchi, T. (2009). Effect of compressiveloading on the chloride penetration of concrete mixed withgranulated blast furnace slag, Journal of the Korea Instituteof Building Construction, 9(6), 71-78 [in Korean]. https://doi.org/10.5345/JKIC.2009.9.6.071
  12. Kwon, S.J. (2017). Service life prediction for concrete girderexposed to chloride attack considering effects of loadingconditions and cold joint, Journal of the Korea ConcreteInstitute (Accepted) [in Korean].
  13. Kwon, S.J., Na, U.J. (2011). Prediction of durability for RCcolumns with crack and joint under carbonation based onprobabilistic approach, International Journal of ConcreteStructures and Materials, 5(1), 11-18. https://doi.org/10.4334/IJCSM.2011.5.1.011
  14. Kwon, S.J., Na, U.J., Park, S.S., Jung, S.H. (2009). Service life prediction of concrete wharves with early-aged crack: probabilistic approach for chloride diffusion, Structural Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  15. Kyo, K., Komori, D., Kato, Y., Utomo, T. (2000). "Effect of Mix Proportion and Working Conditions on Cold Joint in Concrete," Proceedings of the Japan Concrete Institute, 22(2000), 259-264.
  16. Mun, J.M. (2016). Chloride Diffusion Coefficients in Cold Joint Concrete Considering Loading Conditions and Slag, Master's Thesis, Hannam University, Korea [in Korean].
  17. Oh, K.S. (2017). Service life Evaluation of Cold Joint Concrete Considering Loading Conditions and Slag under Chloride Attack, Master's Thesis, Hannam University [in Korean].
  18. Oh, K.S., Kwon, S.J. (2017). Chloride diffusion coefficient evaluation in 1 year-cured OPC concrete under loading conditions and cold joint, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(5), 21-29 [in Korean]. https://doi.org/10.11112/JKSMI.2017.21.5.021
  19. RILEM (1994). Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, 28-52.
  20. Song, H.W., Kwon, S.J. (2009). Evaluations of chloride penetration in high performance concrete using neural network algorithm and micro pore structure, Cement and Concrete Research, 39(9), 814-824. https://doi.org/10.1016/j.cemconres.2009.05.013
  21. Song, H.W., Pack, S.W., Lee, C.H., Kwon, S.J. (2006). Service life prediction of concrete structures under marine environment considering coupled deterioration, Journal of Restoration of Build Monuments, 12(4), 265-284.
  22. Thomas, M.D.A., Bamforth, P.B. (1999). Modeling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  23. Thomas, M.D.A., Bentz, E.C. (2002). Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 12-56.
  24. Yoo, S.Y., Kwon, S.J. (2016). Effects of cold joint and loading conditions on chloride diffusion in concrete containing GGBFS, Consturction and Building Materials, 115, 247-255. https://doi.org/10.1016/j.conbuildmat.2016.04.010