• Title/Summary/Keyword: RC building

Search Result 733, Processing Time 0.025 seconds

Seismic response analysis of RC frame core-tube building with self-centering braces

  • Xu, Long-He;Xiao, Shui-Jing;Lu, Xiao
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This paper examines the seismic responses of a reinforced concrete (RC) frame core-tube building with pre-pressed spring self-centering energy dissipation (PS-SCED) braces. The PS-SCED brace system consists of friction devices for energy dissipation, pre-pressed combination disc springs for self-centering and tube members as guiding elements. A constitutive model of self-centering flag-shaped hysteresis for PS-SCED brace is developed to better simulate the seismic responses of the RC frame core-tube building with PS-SCED braces, which is also verified by the tests of two braces under low cyclic reversed loading. Results indicate that the self-centering and energy dissipation capabilities are well predicted by the proposed constitutive model of the PS-SCED brace. The structure with PS-SCED braces presents similar peak story drift ratio, smaller peak acceleration, smaller base shear force and much smaller residual deformations as compared to the RC frame core-tube building with bucking-restrained braces (BRBs).

Structural Analysis Methods for RC Building Demolition Work under Heavy Equipment Loading (해체공사 실무자를 위한 기계식 해체대상 RC구조물의 해석기법 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Park, Ji-Young;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.569-575
    • /
    • 2011
  • In domestic mechanical demolition work against RC building, unsuitable selection and loading of heavy equipment have led to occasional accidents such as collapse of structural members during the work. Therefore, proper analysis technique to easily decide allowable equipment load on the structure is needed at the planning stage of mechanical demolition work. In this paper, performing loading test and elastic analysis against 4-story building at full scale, we confirm appropriateness for allowable load of equipment on RC structures, which was suggested in previous study, and suggest structural analysis method that can evaluate safety of RC building during the mechanical demolition. The suggested method can be effectively utilized to improve work efficiency through safety of mechanical demolition work against RC building and proper management of equipments.

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

Reliability assessment of RC shear wall-frame buildings subjected to seismic loading

  • Tuken, Ahmet;Dahesh, Mohamed A.;Siddiqui, Nadeem A.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • A considerable research is available on the seismic response of Reinforced Concrete (RC) shear wall-frame buildings, but the studies on the reliability of such buildings, with the consideration of human error, are limited. In the present study, a detailed procedure for reliability assessment of RC shear wall-frame building subjected to earthquake loading against serviceability limit state is presented. Monte Carlo simulation was used for the reliability assessment. The procedure was implemented on a 10-story RC building to demonstrate that the shear walls improve the reliability substantially. The annual and life-time failure probabilities of the studied building were estimated by employing the information of the annual probability of earthquake occurrence and the design life of the building. A simple risk-based cost assessment procedure that relates both the structural life-time failure probability and the target reliability with the total cost of the building was then presented. The structural failure probability (i.e., the probability of exceeding the allowable drift) considering human errors was also studied. It was observed that human error in the estimation of total load and/or concrete strength changes the reliability sharply.

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

Analysis of Construction Cases for Sequential PC Stairway Method (RC 계단실 연속화 시공을 위한 PC 계단 공법 현장사례 분석)

  • Lee, Suk-Yong;Rhim, Hong-Chul;Kim, Ook-Jong;Cho, Hong-Duk;Jeong, Mee-Ra
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.15-19
    • /
    • 2008
  • The use of Precast Concrete (PC) stairways is increasing to replace existing Reinforced Concrete (RC) stairways for the faster construction and the better quality control. Among several already developed PC stairway construction methods, RC Core Sequential Construction Method by Using PC Stairways (COSEC) has advantages of 1) allowing core of a building to be built prior to PC stairways so that two different procedures will not interfere with each other, and 2) having a newly developed joint connection with the core so that the RC core and PC stairways can be easily put together. In this paper, cases of several construction sites with the PC stairways method are analyzed. The elements of the developed method are described for further application and improvement.

  • PDF

Evaluation of Serviceability due to Vibration of Slab (건축구조물의 슬래브 진동에 의한 사용성 평가 연구)

  • Woo, Woon-Taek;Park, Tae-Won;Chung, Lan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.225-230
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and flexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However, recent high-rise apartment slabs are mostly light and long, the serviceability of RC slabs due to vibration could be a problem. In this paper, a basic investigation about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satisfied to meet the code against vibration.

  • PDF

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Condition assessment of aged underground water tanks-Case study

  • Zafer Sakka;Ali Saleh;Thamer Al-Yaqoub;Hasan Karam;Shaikha AlSanad;Jamal Al-Qazweeni;Mohammad Mosawi;Husain Al-Baghli
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.493-504
    • /
    • 2024
  • This paper presents the methodology and results for the investigation of the structural safety of 40 aged underground water tanks to support the weight of photovoltaic (PV) systems that were supposed to be placed on their roof reinforced concrete (RC) slabs. The investigation procedure included (1) review of available documents; (2) visual inspection of the roof RC slabs; (3) carrying out a series of nondestructive (ND) tests; and (4) analysis of results. Out of the 40 tanks, eleven failed the visual inspection phase and were discarded from further investigation. The roof RC slabs of the tanks that passed the visual inspection were subjected to a series of ND tests that included infrared thermography, impact echo, ultrasonic pulse velocity (UPV), Schmidt hammer, concrete core compressive strength, and water-soluble chloride content. The NDT results proved that eight more tanks were not suitable to support the PV systems. Based on the results of the visual inspection and testing, a probabilistic decision-making criterion was established to reach a decision regarding the structural integrity of the roof slabs. The study concluded that the condition of the drainage filter was essential in protecting the tanks and its intact presence can be used as a strong indication of the structural integrity of the roof RC slabs.

Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-230
    • /
    • 2017
  • One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.