• Title/Summary/Keyword: RC Connection

Search Result 175, Processing Time 0.027 seconds

Seismic Design Provisions and Revisions to the Guides for RC Flat Plate Systems in the US (미국에서의 RC무량판 내진설계기준과 개정 방향)

  • Kang, Thomas H.K.;Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.25-36
    • /
    • 2008
  • Seismic design of reinforced concrete flat plate structures is often complicated as it deals with three dimensionality and continuous spans, and mostly material complexity and reinforcement variation. A great degree of uncertainty in such structural and material properties is thus inherent in the RC flat plate systems, and hinders simplification of the design process in terms of slab flexure, unbalanced moment transfer at a slab-column connection, and punching shear. For these reasons, there have been substantial changes and updates in building codes relating to flat plates and slab-column connections over a handful of decades. Also, for the same reason, some of codes never have been revised. As a consequence of nonsimultaneous development of each provision, it tends to confuse structural engineers when using a mixture of all different US code provisions. In this paper, in the step-by-step logical order, seismic design of the RC flat plate systems is re-organized and clarified to make it easier to apply. Furthermore, recent changes or proposed changes are introduced, and are explained as to how it will apply in practice.

An Experimental Study on Flexural Performance of Precast Concrete Modular Beam Systems (프리캐스트 콘크리트 모듈러 보 시스템의 휨 성능에 대한 실험적 연구)

  • Ro, Kyong Min;Cho, Chang Geun;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Precast concrete (PC) modules have been increased its use in modular buildings due to their better seismic performance than steel modules. The main issue of the PC module is to ensure structural performance with appropriate connection methods. This study proposed a PC modular beam system for simple construction and improved structural and splicing performance. This modular system consisted of modules with steel plates inserted, and it is easy to construct by bolted connection. The steel plates play the role of tensile rebar and stirrup, which has the advantage of structural performance. The structural performance of the proposed PC modular beam system was evaluated by flexural test on one reinforced concrete (RC) beam specimen consisting of a monolithic, and two PC specimens with the proposed PC modular beam system. The results demonstrated that the proposed PC modular beam system achieved approximately 86% of the structural performance compared to the RC monolithic specimen, with similar ductility of approximately 1.06 fold greater.

The Analytical Study on the Structural Performance of Beam-Column Connections of RC Column and Steel Beam (철근 콘크리트 기둥과 철골 보 접합부의 거동 평가틀 위한 해석적 연구)

  • Hong, Seong-Heon;Han, Sang-Whan;Ryu, Cheon;Lee, Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.110-116
    • /
    • 1998
  • The three-dimensional nonlinear analysis on the partial tension experiment of Beam-Column connections in hybrid connections with RC columns and S beams is simulated. In this paper, mechanical characteristics between steel plates and concrete is investigated. Also the stress transfer mechanism prior to beam-column connection analysis was considered by using joint element.

  • PDF

Evaluation of Lateral Performance in RC Flat Plate System (철근콘크리트 무량판 구조시스템의 횡저항 성능 평가)

  • Song, Ho-Bum;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.151-158
    • /
    • 2006
  • Recently, as RC flat plate system is applied on high-rising building largely, necessity of all over research about lateral performance becomes a prominent. In this paper, It is estimated that performance of slab-column connection in flat plate system is inter-story drift index 3.6%. In addition, when R-factor is fixed in seismic design, it must be considered all system. Also Considering that plastic hinge propagation is not adjustable, R-factor should be applied bellow '5.5'.

  • PDF

Design and Analysis on The Connections of RC Precast Large Panel (철근콘크리트 프리캐스트 대형판 접합부의 설계 및 해석)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.85-92
    • /
    • 2006
  • Precast large panel structures have various connection system such as the horizontal slab-to-wall connection, the vertical wall to wall connection, horizontal slab-to-slab connection, etc. Horizontal connection is connected by vertical tie bars, and vertical joint is connected loop bars and shear keys. The basic function is equalized deformations on later forces and the entire wall panel assembly acts as monolithic actions. Under lateral load some slip occurs in almost vertical connections. The shape and detail of precast connections are very important to the monolithic behavior of overall structures. The paper is a study on the design method and new elasto-plastic analysis of the connections by rigid-bodies spring model.

  • PDF

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Evaluation of Structural Behavior and Serviceability on Transverse Connection for Modular Slab Bridge System (모듈러 슬래브교량의 횡방향 연결부 구조적 거동 및 사용성 평가)

  • Choi, Jin-Woong;Lee, Sang-Seung;Park, Sun-Kyu;Hong, Sung-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.139-146
    • /
    • 2014
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period, traffic impact and environmental impact. This study is a part of research related to the modular bridges. The aim of the study is to analyze the structural behavior and evaluate a serviceability for transverse connection of modular slab bridge. A total of four specimens were fabricated. including a control beam for finding the maximum load by static test. And one control beam and two segmental beams were fabricated for cyclic loading test. As the test result, the beams that were introduced 100% of the design prestressing force showed a smaller maximum deflection, residual deflection and crack width than the control beam. The beam for serviceability evaluation was satisfied with structural serviceability limits of the deflection and crack.

The Study on Local Composite Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관 말뚝 기초 두부 연결부의 합성거동에 대한 연구)

  • You, Sung-Kun;Park, Jong-Myen;Park, Dae-Yong;Kim, Young-Ho;Kang, Won-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.288-296
    • /
    • 2003
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the related specification, type B-method is provident. To investigate real structural behavior of type B connection, several load tests are done with carefully designed experimental system. The purpose of this experiment is mainly focused on the understanding of actual behavior which can be predicted by design theory. At this research stage, vertical and lateral loading test are done for three types of specimen to review stress concentration, formation and behavior of imaginary RC column in the footing and effect of non-slip device installed in the steel pipe pile. The load resistance mechanism in these specific connection method is predicted based on both experimental results. The three-dimensional finite element modeling is also done for the purpose of comparison between numerical and experimental result. With all the results gained from experiment the structural behavior of imaginary RC column in the design concept is confirmed. The role of non-slip device is very important and it affects the resistance capacity with help of composite action of concrete and steel pipe pile.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Design Optimization for High Power Inverters

  • Schroder D.;Kuhn H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.713-717
    • /
    • 2001
  • This paper focuses on a network model for GCTs which can be used to investigate high power circuits with or without using RC-snubbers. The series connection of GCTs is commonly applied in the high power inverter field. Here expensive and space-consuming snubbers are applied, to overcome the problem of an asymmetric distribution of the blocking voltage among the single GCTs. As an alternative to large snubbers, a new active gate drive concept is proposed and investigated by simulation.

  • PDF