• Title/Summary/Keyword: RC모델

Search Result 471, Processing Time 0.025 seconds

Ductility Confinement of RC Rectangular Shear Wall (장방형 철근 콘크리트 전단벽의 연성 보강)

  • 강수민;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.530-539
    • /
    • 2002
  • In designing the boundary confinement of shear walls, the current design provisions and recommendations are empirical and prescriptive; they specify a certain confinement length and details, regardless of the actual requirement of ductility Therefore, they are inappropriate to the performance based-design. The purpose of the present study is to develop a ductility design method that Is applicable to the performance based-design of shear wall. For the purpose, experimental studies were performed to investigate variations in the ductility of shear walls with the length of the boundary confinement. Five specimens modeling the compressive zone of cross sections with different confinement area were tested against eccentric vertical load. Through the experimental studies, strength, ductility, and failure mode of the compression zone were investigated. In addition, nonlinear numerical analyses for the overall cross-sections of shear wall were performed to investigate variations of the stress and strain profiles with the length of compression zone. On the basis of the experimental and numerical studies, a ductility design method for shear wall was developed. By using the proposed design method, for a given ductility demand, the area of lateral confinement and corresponding reinforcement ratio can be precisely determined so that the ductile behavior and economical design are assured.

Study on the Performance Enhancement of Radar Target Recognition Using Combining of Feature Vectors (특성 벡터 융합을 이용한 레이더 표적 인식 성능 향상에 관한 연구)

  • Lee, Seung-Jae;Choi, In-Sik;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.928-935
    • /
    • 2013
  • This paper proposed a combining technique of feature vectors which improves the performance of radar target recognition. The proposed method obtains more information than monostatic or bistatic case by combining extracted feature vectors from two receivers. For verifying the performance of the proposed method, we calculated monostatic and bistatic RCS(BRCS) of three full-scale fighters by changing the receiver position. Then, the scattering centers are extracted using 1-D FFT-based CLEAN from the calculated RCS data. Scattering centers are used as feature vectors for neural network classifier. The results show that our method has the better performance than the monostatic or bistatic case.

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

Iterative Phase estimation based on Turbo code (터보부호를 이용한 반복 위상 추정기법)

  • Ryu, Joong-Gon;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we propose carrier phase synchronization algorithm which are base on turbo coded system for DVB-RCS. There have been two categories of phase estimator, single estimator outside turbo code decoder and multiple estimators inside turbo code decoder. In single estimator, we use the estimation algorithm that ML(Maximum Likelihood) and LMS(Least Mean Square), also three different soft decision methods are proposed. Multiple estimator apply PSP(Per Survivor Processing) algorithm additionally. We compared performance between single estimator and Multiple estimator in AWGN channel. We presented the two methods of PSP algorithm for performance elevation. First is the Bi-directional channel estimation and second is binding method.

A Study on Calculation of RCS Using MUSIC Algorithm (MUSIC 알고리즘에 의한 레이더 반사단면적 계산법에 관한 연구)

  • Pang Tian Ting;Jeong Jung-Sik;Park Sung-Hyeon;Nam Taek-Kun;Yim Jeong-Bin;Aim Young-sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.43-46
    • /
    • 2005
  • The detectability of radar depends on RCS(radar cross section). The RCS for complex radar targets may be only approximately calculated by using low-frequency or high-frequency scattering methods, while the RCS for simple rob targets can be exactly obtained by applying an eigen-function method. However, the conventional methods for calculation of RCS are computationally complex. We propose an approximation method for RCS calculation by MUSIC algorithm In this research, it is assumed toot the radar target is considered as a ring of scatterers. The amplitudes of scatterers may be statistically distributed. As the result, the radar signal model is proposed to use MUSIC, and the RCS is calculated by a simple linear algebraic method.

  • PDF

An Enhanced Reverse-link Traffic Control and its Performance Analysis in cdma2000 1xEV-DO Systems (cdma2000 1xEV-DO 시스템에서 개선된 역방향 트래픽 제어와 성능 분석)

  • Yeo, Woon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.891-899
    • /
    • 2008
  • The cdma2000 1xEV-DO system controls the data rates of mobile terminals based on a binary overload indicator from the base station and a simple probabilistic model. However, this traffic control scheme has difficulty in controlling the reverse-link traffic load effectively and in guaranteeing a stable operation of the reverse link because each mobile terminal determines the next data rate autonomously. This paper proposes a new trafRc control scheme to improve the system stability, and analyzes the proposed scheme by modeling it as a discrete-time Markov process. The numerical results show that the maximum data rate of the proposed scheme is much higher than that of the conventional one. Moreover, the proposed scheme does not modify the standard physical channel structure, so it is compatible to the existing 1xEV-DO system.

Ductility Relationship of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 연성도 상관관계)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.51-61
    • /
    • 2003
  • This research is a park of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. The objectives of this paper are to investigate the relationship between curvature ductility and displacement ductility and to propose a correlation equation for designing of reinforced concrete bridge columns under axial load and cyclic lateral load. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 spirally reinforced concrete columns were selected considering the main variables such as section diameter, aspect ratio, concrete strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. A new equation between curvature ductility factor displacement ductility factor with the aspect ratio was proposed by investigation of 21,600 data produced from the selected column models by applying 3 different definitions of yield displacement.

Numerical Computation of Radar Scattering Coefficient for Randomly Rough Dielectric Surfaces (불규칙적으로 거친 유전체 표면에서의 레이더 산란계수 수치해석적 계산)

  • 차형준;오이석
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Scattering coefficients of randomly rough lossy dielectric surfaces were computed by using the FDTD(Finite-Difference Time-Domain) method and the Monte Carlo method in this paper. The FDTD method was applied to compute electromagnetic wave scattering characteristics at any incident angles, any linear polarizations by dividing the computation region into the total-field region and the scattered-field region. The radar cross sections(RCS) of conducting cylinders have been computed and compared with theoretical results, measurement data and the results from the method of moment(MoM) to verify the FDTD algorithm. Then, to apply the algorithm to compute scattering coefficients of distributed targets, a two-dimensionally rough surface was generated numerically for given roughness characteristics. The far-zone scattered fields of 50 statistically independent dielectric rough surfaces were computed and the scattering coefficient of the surface was calculated from the scattered fields by using the Monte Carlo method. It was found that these scattering coefficients agree well with the SPM(Small Pertubation Method) model in its validity region.

Conceptual Design of Small WIG Craft (소형 위그선 개념 설계)

  • Shin, Myung-Soo;Kim, Yoon-Sik;Lee, Gyeong-Joong;Kang, Kuk-Jin;Park, Young-Ha;Lee, Young-yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.134-146
    • /
    • 2006
  • This paper presents the primary conceptual design results of twenty-passenger class Wing-In-Ground(WIG) effect craft. As a first step, top level requirements were proposed and principal dimensions were determined. Maximum speed in ground effect condition is 150 km/h with two tons payload including passengers. Total weight is estimated as 8.5 tons with 2 tons of thrust. Hull and airfoil sections were designed and self propulsion tests were performed by radio controlled model. Two planing hull forms with the transom stern were proposed and towing tests were performed. The resistance and running attitude were measured and the feasibility is checked for the prototype hull form of the twenty-passenger class WIG craft. The free running tests show the stable smooth running attitude at designed speed. Also this radio controlled model can take off around 0.15 meter wave height. It can be said that the top level requirement for the twenty passenger class WIG ship is satisfied successfully. The design optimization to increase the transport efficiency and safety will be performed in the near future.

An Optimal Aerodynamic and RCS Design of a Cruise Missile (공력 및 RCS 해석 기반의 순항 유도탄 최적설계)

  • Yang, Byeong-Ju;Song, Dong-Gun;Kang, Yong-Seong;Jo, Je-Hyeon;Je, Sang-Eon;Kim, Byeong-Kwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.479-488
    • /
    • 2019
  • A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS.