• Title/Summary/Keyword: RBF neural network

Search Result 178, Processing Time 0.032 seconds

Experimental study of neural linearizing control scheme using a radial basis function network

  • Kim, Suk-Joon;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.731-736
    • /
    • 1994
  • Experiment on a lab-scale pH process is carried out to evaluate the control performance of the neural linearizing control scheme(NLCS) using a radial basis function(RBF) network which was previously proposed by Kim and Park. NLCS was developed to overcome the difficulties of the conventional neural controllers which occur when they are applied to chemical processes. Since NLCS is applicable for the processes which are already controlled by a linear controller and of which the past operating data are enough, we first control the pH process with PI controller. Using the operating data with PI controller, the linear reference model is determined by optimization. Then, a IMC controller replaces the PI controller as a feedback controller. NLCS consists of the IMC controller and a RBF network. After the learning of the neural network is fully achieved, the dynamics of the process combined with the neural network becomes linear and close to that of the linear reference model and the control performance of the linear control improves. During the training, NLCS maintains the stability and the control performance of the closed loop system. Experimental results show that the NLCS performs better than PI controller and IMC for both the servo and the regulator problems.

  • PDF

A Study on Speaker Recognition Algorithm Through Wire/Wireless Telephone (유무선 전화를 통한 화자인식 알고리즘에 관한 연구)

  • 김정호;정희석;강철호;김선희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.182-187
    • /
    • 2003
  • In this thesis, we propose the algorithm to improve the performance of speaker verification that is mapping feature parameters by using RBF neural network. There is a big difference between wire vector region and wireless one which comes from the same speaker. For wire/wireless speakers model production, speaker verification system should distinguish the wire/wireless channel that based on speech recognition system. And the feature vector of untrained channel models is mapped to the feature vector(LPC Cepstrum) of trained channel model by using RBF neural network. As a simulation result, the proposed algorithm makes 0.6%∼10.5% performance improvement compared to conventional method such as cepstral mean subtraction.

Design of Radial Basis Function Neural Network(RBFNN) Structure Based on PSO (PSO 기반 RBF 뉴럴 네트워크 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1873_1874
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계한다. 제안된 RBF 뉴럴 네트워크는 은닉층의 활성함수로서 Fuzzy C-Means 클러스터링을 사용하며 더 나아가 모델의 최적화를 위해 PSO 알고리즘을 사용하여 은닉층의 노드 수와 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 NOx 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO (PSO 기반 RBFNN의 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

Theoretical Derivation of Minimum Mean Square Error of RBF based Equalizer

  • Lee Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.795-800
    • /
    • 2006
  • In this paper, the minimum mean square error(MSE) convergence of the RBF equalizer is evaluated and compared with the linear equalizer based on the theoretical minimum MSE. The basic idea of comparing these two equalizers comes from the fact that the relationship between the hidden and output layers in the RBF equalizer is also linear. As extensive studies of this research, various channel models are selected, which include linearly separable channel, slightly distorted channel, and severely distorted channel models. In this work, the theoretical minimum MSE for both RBF and linear equalizers were computed, compared and the sensitivity of minimum MSE due to RBF center spreads was analyzed. It was found that RBF based equalizer always produced lower minimum MSE than linear equalizer, and that the minimum MSE value of RBF equalizer was obtained with the center spread which is relatively higher(approximately 2 to 10 times more) than variance of AWGN. This work provides an analytical framework for the practical training of RBF equalizer system.

Uncertainty-Compensating Neural Network Control for Nonlinear Systems (비선형 시스템의 불확실성을 보상하는 신경회로망 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1597-1600
    • /
    • 2010
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The composed of the control input by using RBF neural networks and auxiliary input to compensate for effects of the approximation errors and disturbances. In the results, using this scheme, the output tracking error between the plant and the reference model can asymptotically converge to zero in the presence of bounded disturbances and approximation errors. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

Nonlinear Control of Active Suspensions using RBF Network with Asymmetric Hydraulic Cylinder (비대칭형 유압 실린더를 사용한 능동 현가 시스템의 RBF 신경회로망을 이용한 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • This paper suggests a suboptimal control scheme of an active suspension system with an asymmetric hydraulic cylinder. In this paper a quarter car model including a nonlinear actuator dynamics is used. A feedback linearization technique is applied to obtain a linear model. An LQ regulator is designed with the linear model to keep robustness against sprung mass variation. The gain of the LQ regulator which depends on the damping coefficient of the damper is calculated by using an RBF neural network for real time application. The improvement achieved with our design is illustrated through comparative simulations.

  • PDF

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Optimized Polynomial RBF Neural Networks Based on PSO Algorithm (PSO 기반 최적화 다항식 RBF 뉴럴 네트워크)

  • Baek, Jin-Yeol;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1887-1888
    • /
    • 2008
  • 본 논문에서는 퍼지 추론 기반의 다항식 RBF 뉴럴네트워크(Polynomial Radial Basis Function Neural Network; pRBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델은 "IF-THEN" 형식으로 기술되는 퍼지 규칙에 의해 조건부, 결론부, 추론부의 기능적 모듈로 표현된다. 조건부의 입력공간 분할에는 HCM 클러스터링에 기반을 두어 구조가 결정되며, 기존에 주로 사용된 가우시안 함수를 RBF로 이용하고, 원뿔형태의 선형 함수를 제안한다. 또한 입력공간 분할시 데이터 집합의 특성을 반영하기 위해 분포상수를 각 입력마다 고려하여 설계함으로서 공간 분할의 정밀성을 높인다. 결론부에서는 기존 상수항의 연결가중치를 다항식 형태로 표현하는 pRBFNN을 제안한다. 제안한 모델의 성능을 평가하기 위해 Box와 Jenkins가 사용한 가스로 시계열 데이터를 적용하고, 기존 모델과의 근사화와 일반화 능력에 대하여 토의한다.

  • PDF

Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF