Design of Radial Basis Function Neural Network(RBFNN) Structure Based on PSO

PSO 기반 RBF 뉴럴 네트워크 구조적 설계

  • Published : 2009.07.14

Abstract

본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계한다. 제안된 RBF 뉴럴 네트워크는 은닉층의 활성함수로서 Fuzzy C-Means 클러스터링을 사용하며 더 나아가 모델의 최적화를 위해 PSO 알고리즘을 사용하여 은닉층의 노드 수와 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 NOx 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

Keywords