• Title/Summary/Keyword: RAM based SSD storage

Search Result 8, Processing Time 0.023 seconds

Performance Evaluation of a RAM based Storage System NGS

  • Kang, Yun-Hee;Kung, Jae-Ha;Cheong, Seung-Kook
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.75-80
    • /
    • 2009
  • Recently high-speed memory array based on RAM, which is a type of solid-state drive (SSD), has been introduced to handle the input/output (I/O) bottleneck. But there are only a few performance studies on RAM based SSD storage with regard to diverse workloads. In this paper, we focus on the file system for RAM based memory array based NGS (Next Generation Storage) system which is running on Linux operating system. Then we perform benchmark tests on practical file systems including Ext3, ReiserFS, XFS. The result shows XFS significantly outperforms other file systems in tests that represent the storage and data requests typically made by enterprise applications in many aspects. The experiment is used to design the dedicated file system for NGS system. The results presented here can help enterprises improve their performance significantly.

A Design of 256GB volume DRAM-based SSD(Solid State Drive) (256GB 용량 DRAM기반 SSD의 설계)

  • Ko, Dea-Sik;Jeong, Seung-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.509-514
    • /
    • 2009
  • In this paper, we designed and analyzed 256GB DRAM-based SSD storage using DDR1 memory and PCI-e interface. SSD is a storage system that uses DRAM or NAND Flash as primary storage media. Since the SSD read and write data directly to memory chips, which results in storage speeds far greater than conventional magnetic storage devices, HDD. Architecture of the proposed SSD system has performance of high speed data processing duo to use multiple RAM disks as primary storage and PCI-e interface bus as communication path of RAM disks. We constructed experimental system with UNIX, Windows/Linux server, SAN Switch, and Ethernet Switch and measured IOPS and bandwidth of proposed SSD using IOmeter. In experimental results, it has been shown that IOPS, 470,000 and bandwidth,800MB/sec of the DDR-1 SSD is better than those of the HDD and Flash-based SSD.

  • PDF

Mirror-Switching Scheme for High-Speed Embedded Storage Systems (고속 임베디드 저장 시스템을 위한 복제전환 기법)

  • Byun, Si-Woo;Jang, Seok-Woo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • The flash memory has been remarked as the next generation media of portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major data storage components for desktop and servers. The purpose of our study is to upgrade a traditional mirroring scheme based on SSD storages due to the relatively slow or freezing characteristics of write operations, as compared to fast read operations. For this work, we propose a new storage management scheme called Memory Mirror-Switching based on traditional mirroring scheme. Our Mirror-Switching scheme improves flash operation performance by switching write-workloads from flash memory to RAM and delaying write operations to avoid freezing. Our test results show that our scheme significantly reduces the write operation delay and storage freezing.

Hybrid in-memory storage for cloud infrastructure

  • Kim, Dae Won;Kim, Sun Wook;Oh, Soo Cheol
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2021
  • Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage (SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12% improvement of container's performance tests.

A Compressed Hot-Cold Clustering to Improve Index Operation Performance of Flash Memory-SSD Systems (플래시메모리-SSD의 인덱스 연산 성능 향상을 위한 압축된 핫-콜드 클러스터링 기법)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.166-174
    • /
    • 2010
  • SSDs are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional index management schemes based on B-Tree due to the relatively slow characteristics of flash memory operations, as compared to RAM memory. In order to achieve this goal, we propose a new index management scheme based on a compressed hot-cold clustering called CHC-Tree. CHC-Tree-based index management improves index operation performance by dividing index nodes into hot or cold segments and compressing pointers and keys in the index nodes and clustering the hot or cold segments. The offset compression techniques using unused free area in cold index node lead to reduce the number of slow erase operations in index node insert/delete processes. Simulation results show that our scheme significantly reduces the write and erase operation overheads, improving the index search performance of B-Tree by up to 26 percent, and the index update performance by up to 23 percent.

Energy-Efficient Subpaging for the MRAM-based SSD File System (MRAM 기반 SSD 파일 시스템의 에너지 효율적 서브페이징)

  • Lee, JaeYoul;Han, Jae-Il;Kim, Young-Man
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.369-380
    • /
    • 2013
  • The advent of the state-of-the-art technologies such as cloud computing and big data processing stimulates the provision of various new IT services, which implies that more servers are required to support them. However, the need for more servers will lead to more energy consumption and the efficient use of energy in the computing environment will become more important. The next generation nonvolatile RAM has many desirable features such as byte addressability, low access latency, high density and low energy consumption. There are many approaches to adopt them especially in the area of the file system involving storage devices, but their focus lies on the improvement of system performance, not on energy reduction. This paper suggests a novel approach for energy reduction in which the MRAM-based SSD is utilized as a storage device instead of the hard disk and a downsized page is adopted instead of the 4KB page that is the size of a page in the ordinary file system. The simulation results show that energy efficiency of a new approach is very effective in case of accessing the small number of bytes and is improved up to 128 times better than that of NAND Flash memory.

Development of Simulator using RAM Disk for FTL Performance Analysis (RAM 디스크를 이용한 FTL 성능 분석 시뮬레이터 개발)

  • Ihm, Dong-Hyuk;Park, Seong-Mo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.35-40
    • /
    • 2010
  • NAND flash memory has been widely used than traditional HDD in PDA and other mobile devices, embedded systems, PC because of faster access speed, low power consumption, vibration resistance and other benefits. DiskSim and other HDD simulators has been developed that for find improvements for the software or hardware. But there is a few Linux-based simulators for NAND flash memory and SSD. There is necessary for Windows-based NAND flash simulator because storage devices and PC using Windows. This paper describe for development of simulator-NFSim for FTL performance analysis in NAND flash. NFSim is used to measure performance of various FTL algorithms and FTL wear-level. NAND flash memory model and FTL algorithm developed using Windows Driver Model and class for scalability. There is no need for another tools because NFSim using graph tool for data measure of FTL performance.

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.