• Title/Summary/Keyword: RADAR-estimated rain

Search Result 36, Processing Time 0.025 seconds

Effect of Threshold on the Comparison of Radar and Rain Gauge Rain Rate (레이더 강우와 지상강우 비교에 대한 임계값의 영향 평가)

  • Yoon, Jungsoo;Ha, Eunho;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.522-522
    • /
    • 2015
  • In this study, the effect of threshold applied to the radar rain rate on the comparison of the radar and rain gauge rain rate was theoretically examined. The result derived was also evaluated theoretically, using the Bernoulli random field, and empirically, using Mt. Kwanak weather radar data. The results are summarized as follows. (1) In the application to the Bernoulli random field, it was found that the comparison of the radar and rain gauge rain rate with threshold does not introduce any systematic bias. (2) The same results could also be derived in the application to Mt Kwanak weather radar data. In all cases with several radar bin sizes and thresholds considered, the bias was estimated to be far less than 10% of the mean of the rain gauge rain rate. (3) However, in the comparison with threshold applied to both the radar and rain gauge rain rate, the bias was estimated to be higher than 20%. That is, the systematic bias was introduced. This result indicates that the comparison with threshold applied to both the radar and rain gauge rain rate should not be used.

  • PDF

Combined Microwave Radiometer and Micro Rain Radar for Analysis of Cloud Liquid Water

  • Yang, Ha-Young;Chang, Ki-Ho;Kang, Seong-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • To combine the micro rain radar and microwave radiometer cloud liquid water, we estimate the cloud physical thickness from the difference between the MTSAT-1R cloud top height and cloud base height of visual observation of Daegwallyeong weather station, and the cloud liquid water path of micro rain radar is obtained by multiplying the liquid water content of micro rain radar and the estimated cloud physical thickness. The trend of microwave radiometer liquid water path agrees with that of the micro rain radar during small precipitation. We study these characteristics of micro rain radar and microwave radiometer for small precipitation to obtain the combined cloud water content of micro rain radar and microwave radiometer, constantly operated regardless to the rainfall.

Effect of Combined Rainfall Observation with Radar and Rain Gauge (강우 레이더와 지상 우량계의 통합관측효과)

  • Yoo, Chul-Sang;Kim, Kyoung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.841-849
    • /
    • 2007
  • This study evaluated the effect of combined rainfall observation of using rain gauge and rain radar. The effect of combined observations is to be evaluated by considering the decrease of measurement error due to combined use of design orthogonal observation methods. As an example, this study evaluated the rain gauge network of the Keum river basin, and showed how the density of rain gauges could be decreased by combining the radar observation. This study applied the researches on sampling error by North and Nakamoto(1989), Yoo et al. (1996) and Yoo (1997), also the simple NFD model for representing the rainfall field. The model parameters were decided using the rainfall characteristics (correlation time and length) estimated using the data collected in the Keum River Basin by 28 rain gauges and the operation rule of radar was assumed arbitrarily. This study considered the rain gauge density criteria provided by WMO(1994) and the rain gauge density installed in the Keum river basin to decrease the rain gauge density under the condition of introducing the radar.

Improvement of Radar Rainfall Intensity and Real-time Estimation of Areal Rainfall (레이더에 의한 개선된 강우강도와 면적 강우량의 실시간 추정)

  • Jung, Sung-Hwa;Kim, Kyung-Eak;Kim, Gwang-Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.643-646
    • /
    • 2006
  • An operational calibration is applied to improve radar rainfall intensity using rainfall obtained from rain gauge. The method is applied under the assumption of the temporal continuity of rainfall, the rainfall intensity from rain gauge is linearly related to that from radar. The method is applied to the cases of typhoon and rain band using the reflectivity of CAPPI at 1.5km obtained from Jindo radar. The CAPPI is obtained by bilinear interpolation. For the two cases, the rainfall intensities obtained by operational calibration are very consistent with the ones by the rain gauges. The present study shows that the correlation between the rainfall intensity by operational calibration and rain gauges is better than the one between the rainfall intensity by M-P relationship and rain gauges. The correlation coefficients between the total rainfall intensity obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.99 and 0.97, respectively. Areal rainfalls are estimated using the field of calibration factor interpolated by Barnes objective analysis. The method applied here shows an improvement in the areal rainfall estimation. For the cases of typhoon and rain band, the correlation between the areal rainfall by operational calibration and rain gauges is better than the one between the area rainfall by M-P relationship and rain gauges. The correlation coefficients between the areal rainfall obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.97 and 0.84, respectively. The present study suggests that the operational calibration is very useful for the real-time estimation of rainfall intensity and areal rainfall.

  • PDF

Estimation of Quantitative Precipitation Rate Using an Optimal Weighting Method with RADAR Estimated Rainrate and AWS Rainrate (RADAR 추정 강수량과 AWS 강수량의 최적 결합 방법을 이용한 정량적 강수량 산출)

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.485-493
    • /
    • 2006
  • This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

Effect of R-Z Relationships Derived from Disdrometer Data on Radar Rainfall Estimation during the Heavy Rain Event on 5 July 2005 (2005년 7월 5일 폭우 사례 시 우적계 R-Z 관계식이 레이더 강우 추정에 미치는 영향)

  • Lee, GyuWon;Kwon, Byung-Huk
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.596-607
    • /
    • 2012
  • The R-Z relationship is one of important error factors to determine the accuracy of radar rainfall estimation. In this study, we have explored the effect of the R-Z relationships derived from disdrometer data in estimating the radar rainfall. The heavy rain event that produced flooding in St-Remi, Quebec, Canada has been occurred. We have tried to investigate the severity of rain for this event using high temporal (2.5 min) and spatial resolution ($1^{\circ}$ by 250 m) radar data obtained from the McGill S-band radar. Radar data revealed that the heavy rain cells pass directly over St-Remi while the coarse raingauge network was not sufficient to detect this rain event. The maximum 30 min (1 h) accumulation reaches about 39 (42) mm in St-Remi. During the rain event, the two disdrometers (POSS; Precipitation Occurrence Sensor System) were available: One used for the reflectivity calibration by comparing disdrometer Z and radar Z and the other for deriving disdrometric R-Z relationships. The result shows the significant improvement with the disdrometric reflectivity-dependent R-Z relationships against the climatological R-Z relationship. The bias in radar rain estimation is reduced from +12% to -2% and the root-mean squared error from 16 to 10% for daily accumulation. Using the estimated radar rainfall rate with disdrometric R-Z relationships, the flood event was well captured with proper timing and amount.

Evaluation of Ground-Truth Results of Radar Rainfall Depending on Rain-Gauge Data (우량계 강우 자료에 따른 레이더 강우의 지상보정 결과 검토)

  • Kim, Byoung-Soo;Kim, Kyoung-Jun;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.19-29
    • /
    • 2007
  • This study compares various ground-truth designs of radar rainfall using rain-gauge data sets from Korea Meteorological Administration (KMA), AWS and Ministry of Construction and Transportation (MOCT). These Rain-gauge data sets and the Mt. Gwanak radar rainfall data for the same period were compared, and then the differences between two observed rainfall were evaluated with respect to the amount of bias. Additionally this study investigated possible differences in bias due to different storm characteristics. The application results showed no distinct differences between biases from three rain-gauge data sets, but some differences in their statistical characteristics. In overall, the design bias from MOCT was estimated to be the smallest among the three rain-gauge data sets. Among three storm events considered, the jangma with the highest spatial intermittency showed the smallest bias.

A Study on the Improvement in Local Gauge Correction Method (국지 우량계 보정 방법의 개선에 관한 연구)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.525-540
    • /
    • 2015
  • Spatial distribution of precipitation has been estimated based on the local gauge correction (LGC) with a fixed inverse distance weighting (IDW), which is not optimized in taking effective radius into account depending on the radar error. We developed an algorithm, improved local gauge correction (ILGC) which eliminates outlier in radar rainrate errors and optimize distance power for IDW. ILGC was statistically examined the hourly cumulated precipitation from weather for the heavy rain events. Adjusted radar rainfall from ILGC is improved to 50% compared with unadjusted radar rainfall. The accuracy of ILGC is higher to 7% than that of LGC, which resulted from a positive effect of the optimal algorithm on the adjustment of quantitative precipitation estimation from weather radar.

Assessment of Missing Data Estimation with Rain Radar (강우레이더를 활용한 강수량 결측 보정에 관한 연구)

  • Kim, Tae Hyung;Lee, Jong-Hyeon;Lee, Yeong-Gon;Jang, Seung-Yeong;Choe, Gyu-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.310-310
    • /
    • 2018
  • Generally, precipitation measurement were conducted with various authrities. Among these, the MOLIT conduct the hydrological survey for the water resource management such as flood and low-flow forecasting, drought countermeasure, streamflow management. There is totally 424 observatory were existed and each precipitation measurement were obtained and quality assuranced with 10-min interval. It could be arranged or estimated with nearby observatory and radar reflectivity when the total amount of precipitation are existed. The objective of the study is therefore to suggest the method to estimate missing data with rain radar reflectivity. To validate suggested method, 50 observartory were obtained, and the efficiency were analyzed with estimated and observed precipitation. As the result of the study, the suggested method has reliability, and can be used as a method for quality assurance.

  • PDF