DOI QR코드

DOI QR Code

A Study on the Improvement in Local Gauge Correction Method

국지 우량계 보정 방법의 개선에 관한 연구

  • Kim, Kwang-Ho (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Min-Seong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Seo, Seong-Woon (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Park-Sa (Geo-Sciences Institute, Pukyong National University) ;
  • Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University) ;
  • Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 김광호 (부경대학교 환경대기과학과) ;
  • 김민성 (부경대학교 환경대기과학과) ;
  • 서성운 (부경대학교 환경대기과학과) ;
  • 김박사 (부경대학교 지구과학연구소) ;
  • 강동환 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과)
  • Received : 2015.02.10
  • Accepted : 2015.04.15
  • Published : 2015.04.30

Abstract

Spatial distribution of precipitation has been estimated based on the local gauge correction (LGC) with a fixed inverse distance weighting (IDW), which is not optimized in taking effective radius into account depending on the radar error. We developed an algorithm, improved local gauge correction (ILGC) which eliminates outlier in radar rainrate errors and optimize distance power for IDW. ILGC was statistically examined the hourly cumulated precipitation from weather for the heavy rain events. Adjusted radar rainfall from ILGC is improved to 50% compared with unadjusted radar rainfall. The accuracy of ILGC is higher to 7% than that of LGC, which resulted from a positive effect of the optimal algorithm on the adjustment of quantitative precipitation estimation from weather radar.

Keywords

References

  1. Chumchean, S., Seed, A., Sharma, A., 2006, Correcting real-time radar rainfall bias using a Kalman filtering approach, Journal of Hydrology, 317(1), 123-137. https://doi.org/10.1016/j.jhydrol.2005.05.013
  2. Crum, T.D., Alberty, R.L., 1993, The WSR-88D and the WSR-88D operational support facility. Bulletin of the American Meteorological Society, 74, 1669-1687. https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
  3. Deutsch, C.V., 2002, Geostatistical reservoir modeling. Oxford University Press, New York, USA, 376.
  4. Groisman, P.Y., Legates, D.R., 1994, The accuracy of United States precipitation data. Bulletin of the American Meteorological Society, 75, 215-227. https://doi.org/10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2
  5. Hunter, S.M., 1996, WSR-88D Radar rainfall estimation: Capabilities, limitations and potential improvements. National Weather Digest, 20, 26-38.
  6. Jung, S.H., Lee, G.W., 2010, Statistical characteristics of atmospheric conditions related to radar beam propagation using radiosonde data in 2005-2006. Journal of the Korean Earth Science Society, 31, 584-599. https://doi.org/10.5467/JKESS.2010.31.6.584
  7. Kim, K.H., Kim, M.S., Lee, G.W., Kang, D.H., Kwon, B.H., 2013, The adjustment of radar precipitation estimation based on the kriging method. Journal of the Korean Earth Science Society, 34, 13-27. https://doi.org/10.5467/JKESS.2013.34.1.13
  8. Kim, K.H., Lee, G., Kang, D.H., Kwon, B.H., Han, K.Y., 2014, Adjustment of radar precipitation estimation based on the local gauge correction method. Journal of Korean Earth Science Society, 35, 115-130. https://doi.org/10.5467/JKESS.2014.35.2.115
  9. Marshall J.S., Palmer W.M.K., 1948, The distribution of raindrops with size. Journal of Meteorology, 5, 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  10. Park, J.C., Kim, M.K., 2013, Comparison of precipitation distributions in precipitation data sets representing 1 km spatial resolution over South Korea produced by PRISM, IDW, and Cokriging. Journal of the Korean Association of Geographic Information Studies, 16, 147-163. https://doi.org/10.11108/kagis.2013.16.3.147
  11. Park, S.-G., Lee, G.W., 2010, Calibration of radar reflectivity measurements form KMA operational radar network. Asia-Pacific Journal of Atmospheric Sciences, 46, 243-259. https://doi.org/10.1007/s13143-010-1010-3
  12. Seo, D.-J., Breidenbach, J.P., Johnson, E.R., 1999, Real-time estimation of mean field bias in radar rainfall data. Journal of Hydrometeorology, 1, 222-240.
  13. Simanton, J.R., Osborn, H.B., 1980, Reciprocal distance estimate of point rainfall. Journal of the Hydraulics Division American Society of Civil Engineers, 106, 1242-1246.
  14. Smith, J.A., Krajewski, W.F., 1991, Estimation of the mean field bias of radar rainfall estimates. Journal of Applied Meteorology, 30, 397-412. https://doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
  15. Suk, M.K., Nam, K.Y., Kim, Y.H., Oh, S.N., 2005, Estimation of quantitative rain intensity from radar reflectivities using a window probability matching method. Journal of the Korean Meteorological Society, 41, 123-138.
  16. Wang, J., Fisher, B.L., Wolff, D.B., 2008, Estimating rain rates from tipping-bucket rain gauge measurements. Journal of Atmospheric and Oceanic Technology, 25, 43-56. https://doi.org/10.1175/2007JTECHA895.1
  17. Ware, E.C., 2005, Corrections to radar-estimated precipitation using observed rain gauge data. MSD. dissertation, Cornell University, Newyork, United States, 96.
  18. Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Van C.S., Kelleher K., Kitzmiller D., Ding F., Seo, D.J., Wells, E., Dempsey C., 2011, National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bulletin of the American Meteorological Society, 92, 1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1