• Title/Summary/Keyword: R2R XRD

Search Result 479, Processing Time 0.03 seconds

Analyzing Effective Thermal Conductivity of Rocks Using Structural Models (구조모델을 이용한 암석의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk;Lee, Young-Min
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.171-180
    • /
    • 2011
  • For 21 rock samples consisting of granite, sandstone and the effective thermal conductivity (TC) was measured with the LFA-447 Nanoflash, and mineralogical compositions were also determined from XRD analysis. The structural models were used to examine the effects of quartz content and the size of minerals on TC of rocks. The experimental results showed that TC of rocks was strongly related to quartz content with $R^2$ value of 0.75. Therefore, the proposed regression model can be a useful tool for an approximate estimation of TC only from quartz content. Some samples with similar values of quartz content, however, illustrated great differences in TC, presumably caused by differences in the size of minerals. An analysis from structural models showed that TC of rocks with fine-grained minerals was likely to fall in the region between Series and EMT model, and it moved up to ME and Parallel model as the size of minerals increased. This progressive change of structural models implies that change of TC depending on the size of minerals is possibly related to the scale of experiments; TC was measured from a disk sample with a thickness of 3 mm. Therefore, in case of measurements with a thin sample, TC can be overestimated as compared to the real value in the field scale. The experimental data illustrated that the scale effect was more pronounced for rocks with bigger size of minerals. Thus, it is worthwhile to remember that using a measured TC as a representative value for the real field can be misleading when applied to many geothermal problems.

Characterization of Low Temperature Selective Catalytic Reduction over Ti Added Mn-Cu Metal Oxides (Ti가 첨가된 Mn-Cu 혼합산화물을 이용한 저온 SCR 반응 특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2013
  • In this study, Ti added Mn-Cu mixed oxide catalysts were prepared by a co-precipitation method and used for the low temperature (< $200^{\circ}C$) selective catalytic reduction (SCR) of NOx with $NH_3$. Physicochemical properties of these catalysts were characterized by BET, XRD, XPS, and TPD. Mn-Cu mixed oxide catalysts were found to be amorphous with a large surface and they showed high SCR activity. Experimental results showed that the addition of $TiO_2$ to Mn-Cu oxide enhanced the SCR activity and $N_2$ selectivity. Ti addition led to the chemically adsorbed oxygen species that promoted the oxidation of NO to $NO_2$ and increased the number of $NH_3$ adsorbed-sites such as $Mn^{3+}$.

Polyaniline/SiO2 Catalyzed One-pot Mannich Reaction: An Efficient Synthesis of β-amino Carbonyl Compounds (Polyaniline/SiO2를 이용한 one-pot Mannich 반응: β-amino carbonyl 화합물의 효율적인 합성)

  • Yelwande, Ajeet A.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.644-649
    • /
    • 2011
  • Polyaniline/$SiO_2$ catalyzed one-pot mannich reaction of acetophenone, aromatic aldehydes and aromatic amines are carried out in ethanol to afford various ${\beta}$-amino ketones. The various wt% of polyaniline were supported on pure silica synthesized by using chemical oxidative method. The catalyst prepared has been characterized by means of thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). Solvent stability of catalyst was tested using UV-Visible spectroscopy. This protocol has several advantages such as high yield, simple work up procedure, non-toxic, clean, easy recovery and reusability of the catalyst.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Electrical properties of $SrTiO_3$ thin films deposited at low temperatures by RF magnetron sputtering (RF 마그네트론 스퍼터링에 의해 저온 증착한 $SrTiO_3$ 박막의 전기적 특성)

  • 김동식;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.359-364
    • /
    • 1996
  • $SrTiO_3$ thin films were deposited on Pt/Ti/$SiO_2$/Si substrates at low temperatures below $300^{\circ}C$ by r.f. magnetron sputtering. The materials and the electrical properties of the deposited films were investigated with controlling deposition parameters such as substrate temperature(T_s) and positive substrate d.c. bias voltage. Stoichiometric $SrTiO_3$ films were obtained at Ts of $300^{\circ}C$, but Sr content in the film was less than that of a target when Ts was lower than $300^{\circ}C$, resulting in poor electrical properties. By introducing a positive substrate d.c. bias during deposition, the crystallinity and the dielectric properties of the films were markedly improved. 400 nm thick $SrTiO_3$, films deposited at $300^{\circ}C$ with a positive substrate d.c. bias of 20V showed a columnar structure with <211> crystallographic direction and a dielectric constant of 98.

  • PDF

A Study on the Reaction of Al-1% Si with Ti-silicide (Al-1% Si층과 Ti-silicide층의 반응에 관한 연구)

  • Hwang, Yoo-Sang;Paek, Su-Hyon;Song, Young-Sik;Cho, Hyun-Choon;Choi, Jin-Seog;Jung, Jae-Kyoung;Kim, Young-Nam;Sim, Tae-Un;Lee, Jong-Gil;Lee, Sang-In
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.408-416
    • /
    • 1992
  • Stable TiS$i_2$was formed by RTA on single-Si and on poly-Si. Subsequently, an Al-1% Si layer with 600-nm thick was deposited on top of the TiS$i_2$, Finally, the specimens were annealed for 30min at 400-60$0^{\circ}C$in $N_2$ambient. The thermal stability of Al-1% Si/TiS$i_2$bilayer and interfacial reaction were investigated by measuring sheet resistance, Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The composition and phase of precipitates formed by the reaction of Al-1% Si with Ti-silicide were studied by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD). In the case of single-Si substrate the reaction of Al-1% Si layer with TiS$i_2$layer resulted in precipitates, consuming all TiS$i_2$layer at 55$0^{\circ}C$. On the other hand, the disappearance of TiS$i_2$on poly-Si occurred at 50$0^{\circ}C$ and more precipitates were formed by the reaction of Al-1% Si/TiS$i_2$on potty-Si substrate than those of the reaction on single-Si substrate. This phenomenon resulted from the fact that Ti-silicide formed on poly-Si was more unstable than on single-Si by the effect of grain boundary. By EDS analysis the precipitates were found tobe composed of Ti, Al, and Si. X-ray diffraction showed the phase of precipitates to be theT$i_7$A$l_5$S$i_12$ternary compound.

  • PDF

VOCs Oxidation Characteristics of Transition $Metals/\gamma-Al_2O_3$ Catalyst (전이금속/$\gamma-Al_2O_3$ 촉매의 VOCs 산화특성)

  • Kim, Bong-Soo;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.444-451
    • /
    • 2007
  • Catalytic oxidation characteristics of benzene as a VOC was investigated using a fixed bed reactor system over transition $metals/\gamma-Al_2O_3$ catalysts. As transition metals, eight metals including copper, nickel, manganese, iron etc. were adopted. The parametric tests were conducted at the reaction temperature range of $200\sim500^{\circ}C$, benzene concentration of $1,000\sim3,000$ ppm, and space velocity range of $5,000\sim60,000\;hr^{-l}$. The property analyses such as BET, SEM, XRD and the conversions of catalytic oxidation of VOC were examined. The experimental results showed that the conversion was increased with decreasing VOC concentration and space velocity. It was also found that $Cu/\gamma-Al_2O_3$ catalyst calcinated at $500^{\circ}C$ showed the highest activity for the oxidation of benzene and 15% metal loading was the optimum impregnation level.

CO2 Removal using MEA (monoethanolamine) Impregnated Mesoporous Materials (MEA (monoethanolamine) 함침 메조포러스 물질을 이용한 CO2 회수)

  • Park, Ye-Won;Baek, Il-Hyun;Park, Sang-Do;Lee, Jae-Wook;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.573-581
    • /
    • 2007
  • The present study deals with removal of $CO_2$ using various mesoporous materials impregnated with MEA (monoethanolamine). The mesoporous materials such as MCM-41, MCM-48 and SBA-15 were synthesised and then impregnated with 30, 50 and 70 wt% of MEA, respectively. XRD, FT-IR and SEM were used to evaluate the characterization of those. From the adsorption/desorption experiments for various materials, the adsorption capacity of these materials were found in the order of MCM-41> MCM-48> SBA-15. MCM-41 impregnated with 50 wt% of MEA showed the maximum adsorption capacity of $57.1mg-CO_2/gr-sorbent$ at $40^{\circ}C$. It is nearly 8 times higher than MCM-41 without impregnation of MEA. In the multiple cycle test of 20 times, MCM-41 impregnated with 50 wt% of MEA showed a constant adsorption capacity.

Properties of the $\beta$-SiC-$ZrB_2$ Composites with $Al_{2}O_{3}+Y_{2}O_{3}$ additives ($Al_{2}O_{3}+Y_{2}O_{3}$를 첨가한 $\beta$-SiC-$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.853-855
    • /
    • 1998
  • The electrical resistivity and mechanical properties of the hot-pressed and annealed ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$(6:4wt%). In this microstructures. no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 97.6% of the theoretical density. Phase analysis of composites by XRD revealed mostly of a $\alpha$-SiC(6H, 4H), $ZrB_2$ and weakly $\beta$-SiC(15R) phase. The fracture toughness decreased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents and showed the highest for composite added with 4wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives. The electrical resistivity increased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation according to amount of liquid forming additives $Al_{2}O_{3}+Y_{2}O_{3}$. The electrical resistivity of composites is all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

PECVD와 고상결정화 방법을 이용한 poly-SiGe 박막의 제조

  • 이정근;이재진
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.55.2-55
    • /
    • 1998
  • 다견정 심리판-거l르마늄(JXlly-SiGe)은 TFT(thin-film transistor)와 갇븐 소자 응용에 있어서 중요한 불칠이다 .. LPCVD (low pressure chemical vapor deposition) 방법으로 비정칠 SiGc (a-SiGe) 박막올 증 착시키고 고상결정화(SPC: solid-phase crystallization)시켜 poly-SiGc옹 얻는 것은 잘 알려져 있다. 그러 나 그러나 PF'||'&'||'pound;VD-SPC 방법올 이용한 poly-SiGc의 제조에 대해서는 아직 두드러지게 연구된 바 없다. 우리단 PF'||'&'||'pound;VD 방법으로 a-SiGc 박막올 증착시키고 고상캘정화시켜 poly-SiGc올 얻었 R며, :~ 결정성, G Gc 농도, 결정핍의 평끌 크기 눔올 XRD (x-ray diffraction) 방법으호 조사하였다. 특히 pr'||'&'||'pound;VD 증착시 가판온도,Gc 함유량 등이 고상화에 미치는 영향에 대해서 조사하였다. P PECVD 장치는 터보펌프콸 사용하여 71저진공이 2xlOlongleftarrow5 Torr에 이르렀다. 가판윤 SiOOO) 웨이퍼륜 사용하고 기판 온도는 약 150- 35()"C 사이에서 변화되었다. 증착가스는 SiH4, GcH4, 112 등흘 썼다. 증착 압력과 r.f 전력용 각각 O.25ToIT와 3W로 일정하게 하였다 .. Gc 함유량(x)은 x x=O.O-O.5 사이에서 변화되었다 .. PECVD모 증착된 SiGc 박막들은 고상결정화를 위해 $\theta$X)"(:: Nz 분위기에서 24시간동안, 혹은 5OO'C에서 4열간 가열되었다. 고상결정화 후 poly-SiGc 박막은 SiGc(Ill), (220), (311) XRD 피크들올 보여주었으며, 각 피 크들은 poly-Si에 비하여 왼쪽으로 Bragg 각이 이동되었고, Vegard’slaw에 의해서 x의 값올 확 인할 수 있었다. 이것온 RBS 결과와 열치하였다. 약 150-350'C 사이에서 변화된 기판온도의 범위 에서 증착온도가 낮올수콕 견정립의 크기는 대체로 증가하는 것으로 나타났다 .. XHD로 추정된 형 균 결정립의 크기는 최대 약 3$\alpha$1m 정도였다. 또한 같끈 샘플뜰에 대해서 기판온도가 낮올수록 증착속도가 증가함옴 확인하였다 .. Gc 함유량이 x=O.1에서 x=O.5로 증가함에 따라서도 결정립의 크기와 SiGc 증착속도는 증가하는 것으로 나타났다 .. Hwang [1] , Kim[2] 둥의 연구자들은 Gc 함유 량이 증가함에 따라 결정 립 크기가 캄소하는 것올 보고하였으냐, Tsai [3] 둥은 반대의 결과플 보 고하고 Ge 힘유량의 증가시 결정립 크기의 증가에 대해 Gc의 Si보다 낮은 융점 (melting point) 올 강조한 바 있다. 결정립 크기의 증가는 대체로 SiGe 중착속도의 증가와도 관련이 있음올 볼 때, poly-SiGc의 경우에도 polv-Si의 고상화에서와 같이 증착속도가 빠를수록 최종적언 결정럽의 크기가 커지는 것으로 이해될 수도 있다 .. PECVD 증착시 증착속도의 증가는 증착된 박딱에서의 무켈서도를 증 가시킬 수 있음올 고려하면, 이라한 결파플온 p이y-SiGc의 고상결정화에서도 ploy-Si의 고상결정 화에서와 마찬가지로 초기 박막에서의 구조직 무절서도가 클수록, 고상결정화 후 결정 립의 크기 가 커칠 수 있음올 보여준다고 생각휠 수 있다,

  • PDF