DOI QR코드

DOI QR Code

Analyzing Effective Thermal Conductivity of Rocks Using Structural Models

구조모델을 이용한 암석의 유효열전도도 분석

  • Cha, Jang-Hwan (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Koo, Min-Ho (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Keehm, Young-Seuk (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Lee, Young-Min (Korea Institute of Geoscience and Mineral Resources)
  • Received : 2010.11.18
  • Accepted : 2011.04.21
  • Published : 2011.04.28

Abstract

For 21 rock samples consisting of granite, sandstone and the effective thermal conductivity (TC) was measured with the LFA-447 Nanoflash, and mineralogical compositions were also determined from XRD analysis. The structural models were used to examine the effects of quartz content and the size of minerals on TC of rocks. The experimental results showed that TC of rocks was strongly related to quartz content with $R^2$ value of 0.75. Therefore, the proposed regression model can be a useful tool for an approximate estimation of TC only from quartz content. Some samples with similar values of quartz content, however, illustrated great differences in TC, presumably caused by differences in the size of minerals. An analysis from structural models showed that TC of rocks with fine-grained minerals was likely to fall in the region between Series and EMT model, and it moved up to ME and Parallel model as the size of minerals increased. This progressive change of structural models implies that change of TC depending on the size of minerals is possibly related to the scale of experiments; TC was measured from a disk sample with a thickness of 3 mm. Therefore, in case of measurements with a thin sample, TC can be overestimated as compared to the real value in the field scale. The experimental data illustrated that the scale effect was more pronounced for rocks with bigger size of minerals. Thus, it is worthwhile to remember that using a measured TC as a representative value for the real field can be misleading when applied to many geothermal problems.

화강암, 사암, 편마암으로 구성된 21개 암석시료를 대상으로 열전도도를 측정하고, XRD 정량분석을 통해 구성광물의 조성을 파악하였으며, 구조모델 이용하여 석영 함량 및 광물입자의 크기가 암석의 유효열전도도에 미치는 영향을 분석하였다. 측정된 열전도도는 석영 함량과 높은 상관성을 보여 ($R^2=0.75$), 석영 함량으로부터 열전도도를 추정할 수 있는 선형회귀모형을 제시하였다. 화강암 및 변성암 일부 시료의 경우 유사한 석영 함량에도 불구하고 열전도도가 크게 다른 값을 보였는데, 이는 주로 광물업자의 크기 변화와 관련이 있는 것으로 나타났다. 구조모델을 통한 분석 결과 입자의 크기가 작은 경우 열전도도는 scries와 EMT모델의 중간 영역에 해당하는 값을 보이며, 입자가 커지면서 EMT모델, ME모델을 거쳐 Parallel모델에 근접하게 변화하였다. 이러한 열전달 구조모델의 변화는 입자의 크기에 따른 열전도도 변화가 3 mm 두께의 원반시편을 이용하는 실험 규모와 관련이 있음을 시사한다. 즉, 얇은 원반 시료를 이용하여 암석의 열전도도를 측정할 경우 규모효과에 의하여 실제 지반의 값보다 과대평가될 가능성이 높으며, 특히 광물 입자의 크기가 클수록 이러한 오차는 더 커질 것으로 예상된다. 따라서 지열과 관련된 다양한 해석 모델에서 실험실 측정값을 실제 현장규모에서의 대표값으로 사용할 경우 모델의 예측 신뢰도에 영향을 줄 수 있는 요인으로 작용할 수 있다.

Keywords

References

  1. Cha, J., An. S., Koo, M., Song, Y. and Kim, H.C. (2008) Effect of porosity and water content on thermal conductivity of soils. Journal of KoSSGE., v.13(3), p.27- 36.
  2. Cha, J., Koo, M. and Keehm, Y. (2010) An experimental analysis of effective thermal conductivity of porous materials using structural models. Journal of KoSSGE., v.15(6), p.91-98.
  3. Carson, J.K. (2006) Review of effective thermal conductivity models for foods. Int. J. of Refrigeration, v.29, p.958-967. https://doi.org/10.1016/j.ijrefrig.2006.03.016
  4. Carson, J.K., Lovatt, S.J., Tanner, D.J. and Cleland, A.C. (2003) An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations. Int. J. of Refrigeration, v.26, p.873-880. https://doi.org/10.1016/S0140-7007(03)00094-X
  5. Carson, J.K., Lovatt, S.J., Tanner, D.J. and Cleland, A.C. (2005) Thermal conductivity bounds for isotropic, porous materials. Int. J. of Heat and Mass Transfer, v.48, p.2150-2158. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.032
  6. Carson, J.K., Lovatt, S.J., Tanner, D.J. and Cleland, A.C. (2006) Predicting the thermal conductivity of unfrozen, porous food. Journal of Food Engineering, v.75, p.297-307. https://doi.org/10.1016/j.jfoodeng.2005.04.021
  7. Clauser, C. and Huenges, E. (1995) Thermal conductivity of rocks and minerals. Am. Geophysical Union, p.105- 126.
  8. Cowan, R.D. (1961) Proposed method of measuring thermal diffusivity at high temperatures. J. Appl. Physics, v.32, p.1363-1370. https://doi.org/10.1063/1.1736235
  9. Dwivedi, R.D., Goel, R.K., Prasad, V.V.R. and Sinha, A. (2008) Thermo-mechanical properties of Indian and other granites. Int. J. of rock mechanics & mining Sci., v.45, p.303-315. https://doi.org/10.1016/j.ijrmms.2007.05.008
  10. Eucken, A. (1940) Allgemeine GesetzmaBigkeiten fur das Warmeleitvermogen verschiedener Stoffarten und Aggregatzustande. Forschung Gabiete Ingenieur, v.11(1), p.6-20. https://doi.org/10.1007/BF02584103
  11. Fjeldskaar, W., Christie, O.H.J., Midttomme, K., Virnovsky, G., Jensen, N.B., Lohne, A., Eide G.I. and Balling N. (2009) On the determination of thermal conductivity of sedimentary rocks and the significance for basin temperature history. Petroleum Geoscience, v.15(4), p.367-380. https://doi.org/10.1144/1354-079309-814
  12. Horai, K. and Simmons, G. (1969) Thermal conductivity of rock-forming minerals. Earth and Planet. Sci. Lett., v.6, p.359-368.
  13. Jessop, A.M. (2008) Models of thermal conductivity of crystalline rocks. Int. J. of Earth Sci., v.97, p.413-419. https://doi.org/10.1007/s00531-007-0214-y
  14. Kim, H.C., Lee, S. and Song, M.Y. (2004) Geological Characteristics and Heat Flow Relationship in South Korea. Econ. Environ. Geol., v.37(4), p.391-400.
  15. Landauer, R. (1952) The electrical resistance of binary metallic mixtures. J. Appl. Phys., v.23, p.779-784. https://doi.org/10.1063/1.1702301
  16. Lim, K., Lee, S. and Lee, C. (2007) An experimental study on the thermal performance of ground heat exchanger. Exp. Thermal and Fluid Sci., v.31, p.985- 990. https://doi.org/10.1016/j.expthermflusci.2006.10.011
  17. Luo, M., Wood, J.R. and Cathles, L.M. (1994) Prediction of thermal conductivity in reservoir rocks using fabric theory. Journal of Applied Geophysics, v.32(4), p.321- 334. https://doi.org/10.1016/0926-9851(94)90031-0
  18. Maqsood, A., Kamran, K. and Hussain, G. (2004) Prediction of thermal conductivity of granite rocks from porosity and density data at normal temperature and pressure: in situ thermal conductivity measurements. J. of Physics D: Applied Physics, v.37, p.3396-3401. https://doi.org/10.1088/0022-3727/37/24/007
  19. Maroulic, Z.B., Krokida, M.K. and Rahman, M.S. (2002) A structural generic model to predict the effective thermal conductivity of fruits and vegetables during drying. Journal of Food Engineering. v.52, p.47-52. https://doi.org/10.1016/S0260-8774(01)00084-X
  20. Mattea, M., Urbicain, M.J. and Rotstein, E. (1986) Prediction of thermal conductivity of vegetable foods by the effective medium theory. J. Food Sci. v.51 (1), p.113-115. https://doi.org/10.1111/j.1365-2621.1986.tb10848.x
  21. Maxwell, J. C. (1954) A treatise on electricity and magnetism. Dover Publications Inc., New York, 500p.
  22. Ozkahraman, H.T., Selver, R. and Isik, E.C. (2004) Determination of the thermal conductivity of rock from Pwave velocity. Int. J. of Rock Mechanics & Mining Sci., v.41, p.703-708. https://doi.org/10.1016/j.ijrmms.2004.01.002
  23. Park, J., Kim, H.C., Lee, Y., Shim, B. and Song, M.Y. (2009) Thermal Properties of Rocks in the Republic of Korea. Econ. Environ. Geol., v.42 (6), p.591-598.
  24. Park, J., Kim, H.C., Lee, Y. and Song, M.Y. (2007) A study on thermal properties of rocks from Gyeonggido, Gangwon-do, Chungchung-do, Korea. Econ. Environ. Geol., v.40, no.6, p.761-769.
  25. Parker, W.J., Jenkins, W.J., Butler, C.P. and Abbott, G.L. (1961) Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J. App. Physics, v.32, p.1679-1684. https://doi.org/10.1063/1.1728417
  26. Pribnow, D. and Umsonst, T. (1993) Estimation of thermal conductivity from the mineral composition: Influence of fabric and anisotropy. Geophysical Research Letters, v.20, p.2199-2202. https://doi.org/10.1029/93GL02135
  27. Ray, L., Forster, H.-J., Schilling, F.R. and Forster, A. (2006) Thermal diffusivity of felsic to mafic granulites at elevated temperatures. Earth and Planet. Sci. Lett., v.251, p.241-253. https://doi.org/10.1016/j.epsl.2006.09.010
  28. Seipold, U. and Huenges, E. (1998) Thermal properties of gneisses and amphibolites - high pressure and high temperature investigations of KTB-rock samples. Tectonophysics, v.291, p.173-178. https://doi.org/10.1016/S0040-1951(98)00038-9
  29. Shim, B.O. and Lee, C. (2010) Status of Underground Thermal Energy Storage as Shallow Geothermal Energy. Econ. Environ. Geol., v.43 (2), p.197-205.
  30. Singh, T.N., Sinha, S. and Singh, V.K. (2007) Prediction of thermal conductivity of rock through physicomechanical properties. Building and Environment, v.42, p.146-155. https://doi.org/10.1016/j.buildenv.2005.08.022
  31. Song, Y., Kim, H. C. and Lee, S.K. (2006) Geothermal research and development in Korea. Econ. Environ. Geol., v.39(4), p.485-494.
  32. Sundberg, J., Back, P., Ericsson, L.O. and Wrafter, J. (2009) Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. Int. J. of rock mechanics & mining Sci., v.46, p.1023-1028. https://doi.org/10.1016/j.ijrmms.2009.01.010
  33. Ugur, I. and Demirdag, S. (2006) Investigation of the relation between the specific heat capacity and material properties of some natural building and facing stones. Int. J. of Rock Mechanics & Mining Sci., v.43, p.831- 835. https://doi.org/10.1016/j.ijrmms.2005.12.003
  34. Vosteen, H. D. and Schellschmidt, R. (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, v.28, p.499-509. https://doi.org/10.1016/S1474-7065(03)00069-X
  35. Wang, J., Carson, J.K., North, M.F. and Cleland, D.J. (2008) A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int. J. of Heat and Mass Transfer, v.51, p.2389-2397. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.028
  36. Wells, P.B. and Bathke, E.A. (1979) Transient heat conduction from buried underground radioactive nuclear waste. J. Energy, v.3, p.227-234. https://doi.org/10.2514/3.62433
  37. Woodside, W. and Messmer, J. (1961) Thermal conductivity of porous media. I. Unconsolidated sand, J. Appl. Phys., v.32, p.1688-1699. https://doi.org/10.1063/1.1728419

Cited by

  1. A Comparison of Laser Flash and the Divided-bar Methods of Measuring Thermal Conductivity of Rocks vol.44, pp.5, 2011, https://doi.org/10.9719/EEG.2011.44.5.387
  2. A New Structural Model for Predicting Effective Thermal Conductivity of Variably Saturated Porous Materials vol.32, pp.6, 2011, https://doi.org/10.5467/JKESS.2011.32.6.629
  3. Current Status of Research on Thermal and Mechanical Properties of Rock under High-Temperature Condition vol.25, pp.1, 2015, https://doi.org/10.7474/TUS.2015.25.1.001